首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Social cues modulate the performance of communicative behaviors in a range of species, including humans, and such changes can make the communication signal more salient. In songbirds, males use song to attract females, and song organization can differ depending on the audience to which a male sings. For example, male zebra finches (Taeniopygia guttata) change their songs in subtle ways when singing to a female (directed song) compared with when they sing in isolation (undirected song), and some of these changes depend on altered neural activity from a specialized forebrain-basal ganglia circuit, the anterior forebrain pathway (AFP). In particular, variable activity in the AFP during undirected song is thought to actively enable syllable variability, whereas the lower and less-variable AFP firing during directed singing is associated with more stereotyped song. Consequently, directed song has been suggested to reflect a “performance” state, and undirected song a form of vocal motor “exploration.” However, this hypothesis predicts that directed–undirected song differences, despite their subtlety, should matter to female zebra finches, which is a question that has not been investigated. We tested female preferences for this natural variation in song in a behavioral approach assay, and we found that both mated and socially naive females could discriminate between directed and undirected song—and strongly preferred directed song. These preferences, which appeared to reflect attention especially to aspects of song variability controlled by the AFP, were enhanced by experience, as they were strongest for mated females responding to their mate's directed songs. We then measured neural activity using expression of the immediate early gene product ZENK, and found that social context and song familiarity differentially modulated the number of ZENK-expressing cells in telencephalic auditory areas. Specifically, the number of ZENK-expressing cells in the caudomedial mesopallium (CMM) was most affected by whether a song was directed or undirected, whereas the caudomedial nidopallium (NCM) was most affected by whether a song was familiar or unfamiliar. Together these data demonstrate that females detect and prefer the features of directed song and suggest that high-level auditory areas including the CMM are involved in this social perception.  相似文献   

2.
In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.  相似文献   

3.
Female songbirds use male songs as an important criterion for mate selection. Properties of male songs are thought to indicate the male's quality as a potential mate. Song preferences in female zebra finches are known to be influenced by two factors--early auditory experience and the acoustic characteristics of males' songs. Studies often investigate song preferences by priming females with estrogen. However, estrogenic influences on song preferences have not been studied. We investigated the relative influence of early auditory experience, acoustic features of songs, and estrogen availability on song responsiveness in female zebra finches. Juvenile female zebra finches were tutored for 10 days with 40 songs per day with one of three acoustically different song types--simple songs, long-bout songs or complex songs. A fourth group of females was untutored. Aside from this brief song exposure, females were raised and maintained without exposure to male songs. During adulthood, females' behavioral responses to the three song types were tested under three hormone conditions--untreated, estradiol-treated and 1,4,6-androstatriene-3,17-dione (ATD)-treated (to lower endogenous estrogen). Based on the results of our study, four conclusions can be drawn. First, song responsiveness in female zebra finches is strongly affected by minimal early acoustic experience. Second, inexperienced female zebra finches are inherently biased to respond more to complex songs over other song types Third, although female zebra finches are inherently biased to respond more to complex songs, early acoustic experience may either reinforce or weaken this inherent responsiveness to complex songs. Fourth, estrogen selectively accentuates song responsiveness in acoustically-experienced female zebra finches.  相似文献   

4.
Accurate song perception is likely to be as important for female songbirds as it is for male songbirds. Male zebra finches (Taeniopygia guttata) show differential ZENK expression to conspecific and heterospecific songs by day 30 posthatch in auditory perceptual brain regions such as the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). The current study examined ZENK expression in response to songs of different qualities at day 45 posthatch in both sexes. Normally reared juvenile zebra finches showed higher densities of immunopositive nuclei in both the dorsal and ventral areas of NCM and CMM (formerly cmHV), but not HA, a visual area, in response to normal song over untutored song or silence. Male and female patterns of ZENK expression did not differ. We next compared responses of birds reared without exposure to normal song (untutored) to those of normally reared birds. Untutored birds did not show higher responses to normal song than to untutored song in the three song perception areas. Furthermore, untutored birds of both sexes showed lower densities of immunopositive nuclei in all four areas than did normally reared birds. In addition, ZENK expression was greater in untutored females than in males in the dorsal portion of NCM and in CMM. Our findings suggest that at least some neural mechanisms of song perception are in place in socially reared female and male finches at an early age. Furthermore, early exposure to song tutors affects responses to song stimuli.  相似文献   

5.
Rhythm is important in the production of motor sequences such as speech and song. Deficits in rhythm processing have been implicated in human disorders that affect speech and language processing, including stuttering, autism, and dyslexia. Songbirds provide a tractable model for studying the neural underpinnings of rhythm processing due to parallels with humans in neural structures and vocal learning patterns. In this study, adult zebra finches were exposed to naturally rhythmic conspecific song or arrhythmic song. Immunohistochemistry for the immediate early gene ZENK was used to detect neural activation in response to these two types of stimuli. ZENK was increased in response to arrhythmic song in the auditory association cortex homologs, caudomedial nidopallium (NCM) and caudomedial mesopallium (CMM), and the avian amygdala, nucleus taeniae (Tn). CMM also had greater ZENK labeling in females than males. The increased neural activity in NCM and CMM during perception of arrhythmic stimuli parallels increased activity in the human auditory cortex following exposure to unexpected, or perturbed, auditory stimuli. These auditory areas may be detecting errors in arrhythmic song when comparing it to a stored template of how conspecific song is expected to sound. CMM may also be important for females in evaluating songs of potential mates. In the context of other research in songbirds, we suggest that the increased activity in Tn may be related to the value of song for assessing mate choice and bonding or it may be related to perception of arrhythmic song as aversive.  相似文献   

6.
We investigated song development in the pre‐independent zebra finch (aged 15–35 d), a period when neural pathways for song learning and production are forming and social influences outside the family are limited. Expt 1 investigated the onset and the minimum duration of tutoring needed for song learning in fledglings. We found most begin to learn song from 25 d of age and need about 10 d contact with the father tutor to make accurate copies. This onset corresponds with major developments in the formation of the neural circuitry implicated in song acquisition. Subsong also begins on day 25 suggesting that the sensory and motor phases of song learning fully overlap in the zebra finch. Our findings support the hypothesis that the song circuitry is fully functional by 35 d of age and the sensitive phase for zebra finches extends therefore from about days 25–65. However, only the first 10 d of this period are necessary to learn a tutor's song with fair accuracy. Expt 2 investigated the role of the paternal bond, spatial proximity and mating status in a fledgling's choice of song tutor where the father was the sole parent. Young chose the father over single unrelated males (expt 2a) or unrelated males in company with their female partners (expt 2b). Given the close spatial proximity of both potential tutors to the fledglings it is probably the filial bond, established via paternal care that is the cause of this preference. Zebra finches sing the same song phrase in two contrasting contexts: female‐directed song during pre‐copulatory courtship and undirected song where no female or display is involved. In expt 3 we tested the song learning preference of pre‐independent young for two categories of non‐paternal tutors: those singing predominantly female‐directed song and those singing exclusively undirected song. There was a small, but significant, preference for fledgling zebra finches to copy songs from males that sang female‐directed song. This preference is consistent with the hypothesis that young males not only learn the acoustic features of their tutor's song but also the visual and dynamic movements that constitute the courtship display.  相似文献   

7.
In previous studies, androstenedione (AE) replacement therapy restored the highest levels and intensities of courtship song displays in castrated male zebra finches of any hormone tested. Furthermore, female zebra finches responded strongly to AE-treated males and preferred intact males given small AE implants to unsupplemented males. In this study, we asked whether AE treatment might alter song structure, since male song is an important cue in mate choice by female zebra finches. Songs of adult males were recorded. The males were then castrated and given AE therapy and recorded again. No differences were found between the courtship or undirected songs males sang before castration and after AE treatment. As in previous studies, the structure of a male's courtship song differed significantly from his undirected song, and the structural differences between these two song types were not altered by AE treatment.  相似文献   

8.
The perception of song is vital to the reproductive success of both male and female songbirds. Several neural structures underlying this perception have been identified by examining expression of immediate early genes (IEGs) following the presentation of conspecific or heterospecific song. In the few avian species investigated, areas outside of the circuit for song production contain neurons that are active following song presentation, specifically the caudal hyperstriatum ventrale (cHV) and caudomedial neostriatum (NCM). While studied in detail in the male zebra finch, IEG responses in these neural substrates involved in song perception have not been quantified in females. Therefore, adult female zebra finches were presented with zebra finch song, nonzebra finch song, randomly generated tones, or silence for 30 min. One hour later they were sacrificed, and their brains removed, sectioned, and immunocytochemically processed for FOS expression. Animals exposed to zebra finch song had a significantly higher density of FOS-immunoreactive cells in the NCM than those presented with other songs, tones, or silence. Neuronal activation in the cHV was equivalent in birds that heard zebra finch and non-zebra finch song, expression that was higher than that observed in the groups that heard no song. Interestingly, the hippocampus (HP) and adjacent parahippocampal area (AHP) were activated in a manner comparable to the NCM. These results suggest a general role for the cHV in song perception and a more specific role for the NCM and HP/AHP in facilitating recognition of and responsiveness to species-specific song in female zebra finches.  相似文献   

9.
Auditory feedback is necessary for adult song maintenance in both oscines and psittacines. Although belonging to phylogenically separated orders, deafened adult oscine Bengalese finches and psittacine budgerigars exhibit similarities in certain aspects of song changes. An interesting question is whether these birds share common mechanisms for song maintenance. Therefore, it is important to compare the effects of deafening on adult song patterns among and within orders. Although zebra and Bengalese finches are closely related oscine species, few studies have performed direct, long-term, quantitative comparisons of their songs after deafening because suitable song characteristics have not been identified. Based on our previous findings for Bengalese finch songs, we analyzed zebra finch songs over 9 months after deafening, focusing on changes in the number of syllables categorized according to fundamental frequencies. Deafened zebra finches demonstrated a gradual but significant decrease in high-frequency syllables and a tendency to increase low-frequency syllables, similar to deafened Bengalese finches. Although this change took longer in zebra finches, the altered proportion of syllables eventually stabilized. Results indicated that adult songs show similar aspects after auditory deprivation, and that neural mechanisms involved in the maintenance of high-frequency song syllables, using auditory feedback, may be present in both finches despite species differences.  相似文献   

10.
This study addressed the question of how early learning processes in females influence later preferences for a male trait. I tested whether exposure to song alone (of a male other than the father) was sufficient for inducing a stable (repeatable) preference in female zebra finches (Taeniopygia guttata) by limiting early exposure to tape tutoring. A group of controls heard no songs before also being tested in adulthood. Repeated tests for preferences for tutor or unfamiliar song were made, interspersed with additional tests involving new songs. Preferences were tested in an operant task where pecking of response keys led to song playback. Most females significantly preferred one of the two songs in a given test. In the first test, the relative preference for the tutor song was significantly higher for the tutored than for the control females. Subsequently, tutored females' preferences for the tutor song remained higher on average, but the two groups did not differ significantly. However, tutored, but not untutored females' preferences were highly repeatable between tests, suggesting that early exposure to song might lead to a consolidation ol choice behaviour, a previously unknown effect of early exposure to song in female songbirds.  相似文献   

11.
In male songbirds, the song control pathway in the forebrain is responsible for song production and learning, and in females it is associated with the perception and discrimination of male song. However, experiments using the expression of immediate early genes (IEGs) reveal the activation of brain regions outside the song control system, in particular the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). In this study on female canaries, we investigate the role of these two regions in relation to playback of male songs of different quality. Male canaries produce elaborate songs and some contain syllables with a more complex structure (sexy syllables) that induce females to perform copulation solicitation displays (CSD) as an invitation to mate. Females were first exposed to playback of a range of songs of different quality, before they were finally tested with playback of songs containing either sexy or nonsexy syllables. We then sectioned the brains and used in situ hybridization to reveal brain regions that express the IEGs ZENK or Arc. In CMM, expression of ZENK mRNA was significantly higher in females that last heard sexy syllables compared to those that last heard nonsexy syllables, but this was not the case for NCM. Expression of Arc mRNA revealed no differences in either CMM or NCM in both experimental groups. These results provide evidence that in female canaries CMM is involved in female perception and discrimination of male song quality through a mechanism of memory reconsolidation. The results also have further implications for the evolution of complex songs by sexual selection and female choice.  相似文献   

12.
Songbirds learn individually unique songs through vocal imitation and use them in courtship and territorial displays. Previous work has identified a forebrain auditory area, the caudomedial nidopallium (NCM), that appears specialized for discriminating and remembering conspecific vocalizations. In zebra finches (ZFs), only males produce learned vocalizations, but both sexes process these and other signals. This study assessed sex differences in auditory processing by recording extracellular multiunit activity at multiple sites within NCM. Juvenile female ZFs (n = 46) were reared in individual isolation and artificially tutored with song. In adulthood, songs were played back to assess auditory responses, stimulus‐specific adaptation, neural bias for conspecific song, and memory for the tutor's song, as well as recently heard songs. In a subset of females (n = 36), estradiol (E2) levels were manipulated to test the contribution of E2, known to be synthesized in the brain, to auditory responses. Untreated females (n = 10) showed significant differences in response magnitude and stimulus‐specific adaptation compared to males reared in the same paradigm (n = 9). In hormone‐manipulated females, E2 augmentation facilitated the memory for recently heard songs in adulthood, but neither E2 augmentation (n = 15) nor E2 synthesis blockade (n = 9) affected tutor song memory or the neural bias for conspecific song. The results demonstrate subtle sex differences in processing communication signals, and show that E2 levels in female songbirds can affect the memory for songs of potential suitors, thus contributing to the process of mate selection. The results also have potential relevance to clinical interventions that manipulate E2 in human patients. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 302–314, 2015  相似文献   

13.
We examined the effects of song tutoring on adult song preferences, volume of song-control brain regions, and activity of auditory brain regions in female house finches (Carpodacus mexicanus). Hand-reared females were tutored with local songs, foreign songs, or no song. We then examined adult song preferences, determined the Nissl-defined volume of the song-control nuclei HVc, Area X, and RA, and compared the number of cells immunoreactive for Zenk protein in the auditory regions NCM and cmHV, following playback of songs heard early in life (Tutor/Playback Match) versus not heard (Tutor/Playback Nonmatch). All hand-reared birds exhibited preferences for locally recorded song over foreign or heterospecific song. We found no difference in the volume of song-control nuclei among the three groups. As well, we found no difference in the number of Zenk immunoreactive cells in NCM and cmHV between females in the Tutor/Playback Match group and females in the Tutor/Playback Nonmatch group. Isolate-reared birds showed greater Zenk immunoreactivity following song playback than either tutored group. Thus, early auditory experience may not play a role in adult geographic song preferences, suggesting that genetic factors can lead to preferences for songs of local dialects. Song tutoring did not influence the size of song-control regions nor Zenk induction levels following song playback, suggesting that early experience with particular songs does not influence Zenk expression. However, overall greater activation in isolate females in auditory areas suggests that exposure to song early in life may increase the selectivity of Zenk activation to song playback in auditory areas.  相似文献   

14.
Juvenile male zebra finches develop their song by imitation. Females do not sing but are attracted to males' songs. With functional magnetic resonance imaging and event‐related potentials we tested how early auditory experience shapes responses in the auditory forebrain of the adult bird. Adult male birds kept in isolation over the sensitive period for song learning showed no consistency in auditory responses to conspecific songs, calls, and syllables. Thirty seconds of song playback each day over development, which is sufficient to induce song imitation, was also sufficient to shape stimulus‐specific responses. Strikingly, adult females kept in isolation over development showed responses similar to those of males that were exposed to songs. We suggest that early auditory experience with songs may be required to tune perception toward conspecific songs in males, whereas in females song selectivity develops even without prior exposure to song. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

15.
Male animals often change their behavior in response to the level of competition for mates. Male Lincoln''s sparrows (Melospiza lincolnii) modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors'' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln''s sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM), because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA), because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.  相似文献   

16.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

17.
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female‐directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR‐1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR‐1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR‐1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR‐1 expression in these areas. However, EGR‐1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context‐dependent changes could arise de novo in HVC. The pattern of context‐dependent differences in EGR‐1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 47–63, 2016  相似文献   

18.
Zebra finches first form demonstrable memories of specific songs between 25 and 35 days of age--several days after fledging from the nest. What accounts for the late onset of specific song memory formation? Here we investigated physiological development of the caudomedial neostriatum (NCM), part of the avian analogue of auditory cortex and a probable component of the system involved in song perception. Two types of physiological responses were characterized: electrophysiological (single-unit spike rate) and genomic (induction of the immediate early gene zenk, also known as zif-268, egr-1, ngfi-a, krox-24). We found that by day 20, zebra finches already have robust electrophysiological responses in NCM to song stimulation. Spike activity was greater in response to conspecific songs compared to heterospecific songs, white noise, or tones, and approximately 10% of the units showed selective responses to forward versus reversed songs. In contrast, at this age the zenk gene is expressed at a constitutively high level and undergoes no further induction in response to song presentation. At day 30, electrophysiological responses remained similar, but the zenk gene began to shift from a constitutive to an inducible pattern of expression. These results are consistent with a general role for NCM in the representation of song auditory patterns, and with a role for zenk gene expression in governing the efficiency of specific song memory storage at different ages.  相似文献   

19.
Wild zebra finches sing frequently during the breeding season, but the vast majority of song is of the undirected song type that is not directed at any individual, and the function of which is obscure — it appears to be ignored by all potential recipients. It is sung close to the nest-site, has a peak in production during the egg-laying period, and diminishes thereafter. The incidence of undirected song is positively correlated with extra-pair courtship, a finding consistent with the hypothesis that it is a means of advertising availability for extra-pair matings. Typically, undirected song occurred outside the nest when the female was inside, and a positive relationship was found between the amount of singing given by the male during the 5-min interval immediately after the female entered the nest and the time she subsequently spent inside the nest. Keeping the partner inside the nest during her fertile period is an advantage to the male: it serves as a form of paternity protection against other males and it allows him opportunities to pursue his own extra-pair matings. Occupancy of the nest during laying is also a means of guarding against intraspecific brood parasitism, which was high at this colony.  相似文献   

20.
Two way choice tests show a preference of female zebra finches for male songs four standard deviations longer than normal song. Further tests show the ontogeny of this preference to parallel song learning in general as well as a preference for songs with entirely heterogeneous notes compared to songs with four note repeats. These findings are discussed in relation to a theory of the evolution of bird song from bird calls due to female preferences for longer, more complex vocalizations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号