首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Intracellular protein breakdown could be regulated at the substrate level by changes in the environment. Under in vitro conditions, ATP increases the proteolytic susceptibility of several mitochondrial and cytosolic proteins, while 2,3-bisphosphoglycerate not only has the opposite effect but also prevents the ATP-stimulated proteolysis. ATP and 2,3-bisphosphoglycerate, present at relatively high levels in many tissues, provide a good model of environmental components that may influence intracellular proteolysis.  相似文献   

2.
The concentration of 3-phosphoglyceroyl phosphate in erythrocytes was increased by more than 100-fold when red cells were incubated with extracellular phosphoenolpyruvate at 37 degrees C. Since these elevated levels were maintained for 60 min, the metabolism of 3-phosphoglyceroyl phosphate and related compounds could be investigated in phosphoenolpyruvate-treated erythrocytes. 2,3-Bisphosphoglycerate synthesis was not affected by intracellular pH when the 3-phosphoglyceroyl phosphate level was constant but did vary with 3-phosphoglyceroyl phosphate concentration. On the other hand, the relationship between the rate of 2,3-bisphosphoglycerate synthesis and 3-phosphoglyceroyl phosphate concentration was not straightforward. At relatively low concentrations of 3-phosphoglyceroyl phosphate, the observed rate of 2,3-bisphosphoglycerate synthesis agreed with a rate calculated from a formula incorporating kinetic parameters of purified 2,3-bisphosphoglycerate synthase (Rose, Z.B. (1973) Arch. Biochem. Biophys. 158, 903-910). However, at high concentrations of 3-phosphoglyceroyl phosphate, the observed rate of 2,3-bisphosphoglycerate synthesis was lower than the calculated value. The concentration of glucose 1,6-bisphosphate did not increase even when 3-phosphoglyceroyl phosphate was elevated to 200 microM. Elevated levels of intracellular 2,3-bisphosphoglycerate did not inhibit glycolytic activity in these erythrocytes. These results suggest that incubation of erythrocytes with phosphoenolpyruvate is a useful technique to investigate the effect of metabolic perturbations at the intermediate stages of glycolysis.  相似文献   

3.
Pyruvate and K-ferricyanide stimulation of net ATP and 2,3-bisphosphoglycerate synthesis is very probably due to enhancement of glyceraldehyde 3-phosphate dehydrogenase activity. Significant peculiarities in the K-ferricyanide effect and its depression by non-penetrating-SH inhibitors at low concentrations were noted and suggested that membrane-bound enzymes play a substantial part in the synthesis of ATP and 2,3-bisphosphoglycerate. Experiments with isolated ghosts showed their ATP-and 2,3-bis-phosphogylcerate-building capacity. Pulse-labeling with 32P-Pi and determination of specific radioactive in intracellular inorganic phosphate and ATP-gamma-P demonstrated that the ferricyanide-stimulated compartment utilizes only intracellular inorganic phosphate for ATP (and 2,3-bisphosphoglycerate) synthesis, and does so only when extracellular inorganic phosphate is present.  相似文献   

4.
Induction of 2,3-bisphosphoglycerate synthase in Friend leukemia cells   总被引:1,自引:0,他引:1  
Friend leukemia cells (clone 745A) induced to differentiate with dimethylsulfoxide showed at least a 10-fold increase of 2,3-bisphosphoglycerate synthase and concomitant accumulation of 2,3-bisphosphoglycerate. These changes paralelled that of the number of hemoglobin-positive cells. Accumulation of 2,3-bisphosphoglycerate was also induced by dimethylsulfoxide in the other clone C-10-6, but not in C-9-6 which is resistant to differentiation with dimethylsulfoxide. Induced activity of 2,3-bisphosphoglycerate synthase in clone 745A was neutralized by antiserum prepared from a rabbit which was immunized with human erythrocyte 2,30bisphosphoglycerate synthase. By using this antiserum, biosynthesis of 2,3-bisphosphoglycerate synthase was detected in Friend cells only after induction by dimethylsulfoxide.  相似文献   

5.
In contrast to the species with erythrocytes of high 2,3-bisphosphoglycerate content, in the sheep the concentration of 2,3-bisphosphoglycerate decreases during maturation of reticulocytes. The decrease can be explained by the drop of the phosphofructokinase/pyruvate kinase and 2,3-bisphosphoglycerate synthase/2,3-bisphosphoglycerate phosphatase activity ratios that result from the decline of phosphofructokinase, pyruvate kinase, phosphoglycerate mutase and the bifunctional enzyme 2,3-bisphosphoglycerate synthase/phosphatase. The concentrations of fructose 2,6-bisphosphate and aldohexose 1,6-bisphosphates also decrease during sheep reticulocyte maturation in parallel to the 6-phosphofructo 2-kinase and the glucose 1,6-bisphosphate synthase activities.  相似文献   

6.
The specific activity of bisphosphoglycerate synthase (EC 2.7.5.4) is significantly higher in rat mature erythrocytes than in reticulocytes from phenylhydrazine treated animals, while 2,3-bisphosphoglycerate levels do not differ between them. The enzyme specific activity and the concentration of 2,3-bisphosphoglycerate are both negligible in the erythroid cell pool from the bone marrow of anaemic animals. Thus, a cellular specialization in the last stages of erythropoiesis is confirmed. Human bisphosphoglycerate synthase shows a lower specific activity than that of rat without a parallel decrease in 2,3-bisphosphoglycerate levels.  相似文献   

7.
In the rabbit and in the rat, which possess erythrocytes with high concentration of 2,3-bisphosphoglycerate, the 2,3-bisphosphoglycerate synthase activity increases more than two fold during reticulocyte maturation. Isolation of the enzymes with 2,3-bisphosphoglycerate synthase activity present in extracts of reticulocytes and mature erytrocytes by ion exchange fast liquid chromatography shows that the increase in the synthase activity is due to the accumulation of the bifunctional enzyme 2,3-bisphosphoglycerate synthase/phosphatase (EC 2.7.5.4/EC 3.1.3.13) which represents more than 80% of the synthase activity of the cell extracts. During reticulocyte maturation phosphoglycerate mutase (EC 5.4.2.1), which makes a small contribution to the 2,3-bisphosphoglycerate synthase activity in the erythroid cells, decreases in the rabbit and remains constant in the rat.  相似文献   

8.
Bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities responsible for 2,3-bisphosphoglycerate metabolsim in human red cells are displayed by the same enzyme protein which has phosphoglyceromutase activity [Sasaki, R., et al. (1975) Eur J. Biochem. 50, 581-593]. This enzyme was subjected to chemical modification by trinitrobenzenesulfonate. The three enzyme activities were inactivated by trinitrobenzenesulfonate at the same rate. The sulfhydryl content of the enzyme was unchanged during trinitrophenylation, indicating that derivatization was through the amino group. Trinitrophenylation of about one amino group per mole of the enzyme resulted in complete loss of the three activities. Both 2,3-bisphosphoglycerate and 1,3-bisphosphoglycerate inhibited trinitrophenylation and effectively protected the enzyme from inactivation. Although monophosphoglycerates did not show any protective effect at concentrations which should be adequate based upon their kinetic constants, they were protective at higher concentrations. Inactivation by trinitrophenylation was an apparent first-order reaction. The dissociation constant of the enzyme - 2,3-bisphosphoglycerate complex was determined by analyzing the first-order reaction on the assumption that the protective effect of 2,3-bisphosphoglycerate was due to competition with trinitrobenzenesulfonate. The dissociation constant was in good agreement with kinetic constants of 2,3-bisphosphoglycerate in the enzyme reactions, which indicated that 2,3-bisphosphoglycerate did indeed exert its protective effect through competition with trinitrobenzenesulfonate for an amino group of the enzyme. The protective effect of monophosphoglycerates could be rationalized with kinetic evidence that 2-phosphoglycerate at high concentrations interacts with the 2,3-bisphosphoglycerate binding site. These results indicate that the enzyme exhibits the three enzyme activities at a common active site at which one amino group essential for binding of bisphosphoglycerates is located. Based on the multifunctional properties of this enzyme, a possible mechanism was discussed for regulation of 2,3-bisphosphoglycerate metabolism in human red cells.  相似文献   

9.
Metabolism of the substrates D-ribose, xylitol, D-Xylulose, D-fructose, D-glucose and mixtures of these compounds were studied in human erythrocytes. The metabolic rates obtained with the various substrates affected the intracellular levels of ATP and 2,3-bisphosphoglycerate. Small amounts of substrate utilization resulted in a decrease of the ATP and more pronounced of the 2,3-bisphosphoglycerate concentration while carbon utilization rates beyound 14 microgram atom C/ml packed cells/120 min yielded constant levels of ATP and 2,3-bisphosphoglycerate. From these results it can be concluded that a carbon utilization rate of 14 microgram atom C/ml cells/120 min is able to cover the ATP requirement of the red cells under steady state conditions. Based on the carbon utilization rates obtained with the various substrates and the rates of 2,3-bisphosphoglycerate decomposition an attempt is made to calculate the contribution of the 2,3-bisphosphoglycerate bypass to substrate metabolism. In case of xylitol as substrate the decrease in the 2,3-bisphosphoglycerate content provides the regeneration of NAD thus facilitating uptake and metabolism of xylitol.  相似文献   

10.
Two enzymes which possess 2,3-bisphosphoglycerate synthase, 2,3-bisphosphoglycerate phosphatase and phosphoglycerate mutase activities have been purified from pig skeletal muscle. One of the enzymes corresponds to type M phosphoglycerate mutase. The other enzyme shows properties similar to those of the 2,3-bisphosphoglycerate synthase-phosphatase present in mammalian erythrocytes. The erythrocyte and the muscle enzyme possess the same molecular (56 000) and subunit (27 000) weights. The synthase, phosphatase and mutase activity ratio is similar in both enzymes, and they are affected by the same inhibitor (glycerate 3-P) and activators (glycolate 2-P, pyrophosphate, sulfite and bisulfite).  相似文献   

11.
2,3-Bisphosphoglycerate was the most potent effector of glycolytic intermediates tested for their effects on protein synthesis in gel-filtered lysates from rabbit reticulocytes. 2,3-Bisphosphoglycerate at low levels was stimulatory but became inhibitory at high levels. Both effects were dependent on Mg2+ concentrations. The higher the concentration of Mg2+, the higher the concentration of 2,3-bisphosphoglycerate required for maximal activation. 2,3-Bisphosphoglycerate concentrations required to exhibit an inhibitory effect increased as Mg2+ concentration increased. Both effects of 2,3-bisphosphoglycerate are discussed in terms of regulation of hemoglobin synthesis during maturation of erythroid cells.  相似文献   

12.
2,3-Bisphosphoglycerate is a physiologically important regulator of red cell oxygen affinity during mammalian development. The rat has no fetal hemoglobin, but the newborn red cell has low 2,3-bisphosphoglycerate and high ATP concentrations, and high oxygen affinity. This report shows that red cell bisphosphoglyceromutase activity increases from near zero in the newborn rat to very high levels by four weeks of age. This increase roughly parallels the increase in red cell 2,3-bisphosphoglycerate concentration. Red cell pyruvate kinase activity declines ten-fold from birth to four weeks of age. This decrease is associated with a changeover in red cell populations from larger to smaller cells. The glycolytic rate is at least 50% higher in newborn than adult rat red cells. The data suggest that high pyruvate kinase activity and glycolytic rate contribute to the high ATP concentration in newborn rat red cells, but that their low 2,3-bisphosphoglycerate concentration is due primarily to low bisphosphoglyceromutase activity.  相似文献   

13.
This work describes possible molecular mechanisms concerning the control of oxygen affinity in fetal blood of mammalia. There is a genetic control of oxygen affinity through a fetal gene: at constant phosphate concentration (Hb less than P2-glycerate) in humans there is a hemoglobin with only five binding sites to 2,3-bisphosphoglycerate, resulting in an increased oxygen affinity. In several species (sheep, cattle, goat) with Met-Leu as the N-terminal group of the beta-chains, the 2,3-bisphosphoglycerate binding sites are deleted in positions beta 1 and beta 2, so that the regulation is phosphate-independent and thus providing a fetal hemoglobin with an increased oxygen affinity. The allosteric control is observed in pigs. In the postembryonal development "adult" hemoglobin with seven contacts (beta-chains) is demonstrated. The increased oxygen affinity is achieved here by a reduced biosynthesis of 2,3-bisphosphoglycerate (Hb greater than P2-glycerate) (Rapoport-Luebering-cycle). The functional control is discussed with respect to the ontogeny of the hemoglobins.  相似文献   

14.
In human erythrocytes the reactions of the 2,3-bisphosphoglycerate shunt are catalyzed primarily by one protein, 2,3-bisphosphoglycerate synthase-phosphatase. At low concentrations of 2,3-bisphosphoglycerate the phosphatase is activated by several anions including inorganic phosphate and sulfite, and the phosphate activation is inhibited by low concentrations of 3-phosphoglycerate [Z. B. Rose and J. Liebowitz (1970) J. Biol. Chem. 245, 3232-3241]. Phosphate and sulfite also activate at high but physiological concentrations of 2,3-bisphosphoglycerate (5 mM), but the inhibition by 3-phosphoglycerate is much weaker. The basal activity (without added phosphate or sulfite) was also found to be higher and to be 3-phosphoglycerate sensitive; this is attributed to activation either by 2,3-bisphosphoglycerate itself or by a contaminant in it. These results allow previous observations of 2,3-bisphosphoglycerate hydrolysis in intact erythrocytes to be reconciled with the properties of the purified enzyme under near-physiological conditions.  相似文献   

15.
1) Erythrocytes are able to metabolize D-ribose, D-xylitol, D-xylulose, D-fructose and D-glucose; the rates of metabolism increase in that order from 2430 to 26200 ng atom C/ml packed cells per 120 min of incubation. 2) The utilization of the carbon of these substrates and its recovery in the products were found to be in balance, when the change in the 2,3-bisphosphoglycerate concentration was taken into account. 3) The metabolic rates strongly affected the 2,3-bisphosphoglycerate level. Without addition of substrate the decomposition rate of this intermediate was found to be 1030 nmol/ml packed cells per 120 min. 4) The net decrease of the 2,3-bisphosphoglycerate concentration and the conversion of this compound into lactate provides a NAD regeneration system which enables the red blood cells to utilize xylitol. 5) The rate of carbon metabolism via the pentose phosphate cycle is determined by the NADPH requirement of the erythrocytes which was found to be 160 nmol/ml packed cells per 120 min under the experimental conditions employed.  相似文献   

16.
The physiological adaptation to anemia and other hypoxic states includes an increase in the level of 2,3-bisphosphoglycerate (2,3-DPG) in the red cell. We suggest that the high level of 2,3-DPG may have adverse effects in vivo. It has been found that red cells incubated with glycolate lose 2,3-DPG at a rapid rate relative to controls. ATP is stable. Net 2,3-DPG synthesis is observed after the glycolate is removed from the cells suggesting that they are not harmed. The effect appears to be specific for glycolate since lactate, glyoxylate, glycerate, acetate, and citrate were without effect. This procedure could be used to assess the effects of decreasing the 2,3-DPG level to normal in the erythrocytes of sickle cell and other anemias.  相似文献   

17.
A systematic study of the pH-dependent changes in the range 6.6--7.4 of 2,3-bisphosphoglycerate and the adenine nucleotides was performed in the presence and absence of glucose during transitional and steady states. 1. The results indicatethat 2,3-gisphosphoglycerate phosphatase breaks down 2,3-bisphosphoglycerate nearly independent of pH at a rate of 480 mumol 2,3-bisphosphoglycerate x1 cells-1xh-1.2,3-Bisphosphoglycerate mutase is practically completely inhibited below pH value increases in long-term experiments with lower 2,3-bisphosphoglycerate levels. The formation of pyruvate corresponds to the breakdown of 2,3-bisphosphoglycerate afterconsumption of an unknown reducing substance.  相似文献   

18.
Bisphosphoglyceromutase, 2,3-bisphosphoglycerate phosphatase and phosphoglyceromutase have been purified from human red cells. Three enzymes were co-purified throughout all purification steps. Three fractions (peaks I, II and III) which were chromatographically separable and had three activities in different ratios were obtained. Peak III which contained the main bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities was purified to homogeneity by electrophoretic and ultracentrifugal analyses. The homogeneous preparation had the phosphoglyceromutase activity. The three activities were lost at the same rate during thermal inactivation. Thus, bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities, which are responsible for 2,3-bisphosphoglycerate metabolism in red cells, are displayed by the same enzyme protein which has phosphoglyceromutase activity. Peaks I and II were rich in the phosphoglyceromutase activity. Both peaks showed bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities, although these two activities were much smaller than those of peak III. Some of the enzymic properties of peak III are described. Comparative studies on three peaks showed that the phosphoglyceromutase of peak III differed from that of peaks I and II in the kinetic property and thermostability.  相似文献   

19.
The endogenous phosphorylation of human erythrocyte cytosolic proteins is markedly increased when the crude cytosol, prior to incubation in the presence of [y-32P] ATP, is submitted to DEAE-cellulose chromatography. Some proteins, including 22 and 23 kDa proteins, are preferentially phosphorylated by cytosolic casein kinase CS, whereas other proteins, including 42 kDa protein, are preferentially phosphorylated by casein kinase CTS. The CS-catalyzed phosphorylation is strongly inhibited by physiological ionic strength (150 mM KCl or NaCl) and by physiological levels (3 mM) of 2,3-bisphosphoglycerate, while CTS-catalyzed phosphorylation is unaffected. The very poor endogenous phosphorylation of these proteins in the crude cytosol may be due to the presence of other cytosolic inhibitors which are removed by DEAE-cellulose chromatography.  相似文献   

20.
There are two types of phosphoglycerate mutases. The 2,3-bisphosphoglycerate dependent phosphoglycerate mutases are inhibited by vanadate. In contrast, the 2,3-bisphosphoglycerate independent mutases are not affected. The effect of vanadate varies with pH, and can be reversed by dilution, EDTA and norepinephrine. The differential effect of vanadate on the two types of phosphoglycerate mutases supplies a novel way to easily differentiate both types of enzymes. In addition, it may contribute to the clarification of the mechanism of action of the 2,3-bisphosphoglycerate independent phosphoglycerate mutases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号