首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Chordates comprise three major groups, cephalochordates (amphioxus), tunicates (urochordates), and vertebrates. Since cephalochordates were the early branching group, comparisons between amphioxus and other chordates help us to speculate about ancestral chordates. Here, I summarize accumulating data from functional studies analyzing amphioxus cis-regulatory modules (CRMs) in model systems of other chordate groups, such as mice, chickens, clawed frogs, fish, and ascidians. Conservatism and variability of CRM functions illustrate how gene regulatory networks have evolved in chordates. Amphioxus CRMs, which correspond to CRMs deeply conserved among animal phyla, govern reporter gene expression in conserved expression domains of the putative target gene in host animals. In addition, some CRMs located in similar genomic regions (intron, upstream, or downstream) also possess conserved activity, even though their sequences are divergent. These conservative CRM functions imply ancestral genomic structures and gene regulatory networks in chordates. However, interestingly, if expression patterns of amphioxus genes do not correspond to those of orthologs of experimental models, some amphioxus CRMs recapitulate expression patterns of amphioxus genes, but not those of endogenous genes, suggesting that these amphioxus CRMs are close to the ancestral states of chordate CRMs, while vertebrates/tunicates innovated new CRMs to reconstruct gene regulatory networks subsequent to the divergence of the cephalochordates. Alternatively, amphioxus CRMs may have secondarily lost ancestral CRM activity and evolved independently. These data help to solve fundamental questions of chordate evolution, such as neural crest cells, placodes, a forebrain/midbrain, and genome duplication. Experimental validation is crucial to verify CRM functions and evolution.  相似文献   

5.
6.
7.
8.
9.
REDfly: a Regulatory Element Database for Drosophila   总被引:5,自引:0,他引:5  
  相似文献   

10.
It has been shown in several organisms that multiple cis-regulatory modules (CRMs) of a gene locus can be active concurrently to support similar spatiotemporal expression. To understand the functional importance of such seemingly redundant CRMs, we examined two CRMs from the Drosophila snail gene locus, which are both active in the ventral region of pre-gastrulation embryos. By performing a deletion series in a ~25 kb DNA rescue construct using BAC recombineering and site-directed transgenesis, we demonstrate that the two CRMs are not redundant. The distal CRM is absolutely required for viability, whereas the proximal CRM is required only under extreme conditions such as high temperature. Consistent with their distinct requirements, the CRMs support distinct expression patterns: the proximal CRM exhibits an expanded expression domain relative to endogenous snail, whereas the distal CRM exhibits almost complete overlap with snail except at the anterior-most pole. We further show that the distal CRM normally limits the increased expression domain of the proximal CRM and that the proximal CRM serves as a `damper' for the expression levels driven by the distal CRM. Thus, the two CRMs interact in cis in a non-additive fashion and these interactions may be important for fine-tuning the domains and levels of gene expression.  相似文献   

11.
12.
13.
The identification of genome-wide cis-regulatory modules (CRMs) and characterization of their associated epigenetic features are fundamental steps toward the understanding of gene regulatory networks. Although integrative analysis of available genome-wide information can provide new biological insights, the lack of novel methodologies has become a major bottleneck. Here, we present a comprehensive analysis tool called combinatorial CRM decoder (CCD), which utilizes the publicly available information to identify and characterize genome-wide CRMs in a species of interest. CCD first defines a set of the epigenetic features which is significantly associated with a set of known CRMs as a code called ‘trace code’, and subsequently uses the trace code to pinpoint putative CRMs throughout the genome. Using 61 genome-wide data sets obtained from 17 independent mouse studies, CCD successfully catalogued ∼12 600 CRMs (five distinct classes) including polycomb repressive complex 2 target sites as well as imprinting control regions. Interestingly, we discovered that ∼4% of the identified CRMs belong to at least two different classes named ‘multi-functional CRM’, suggesting their functional importance for regulating spatiotemporal gene expression. From these examples, we show that CCD can be applied to any potential genome-wide datasets and therefore will shed light on unveiling genome-wide CRMs in various species.  相似文献   

14.
The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.

This review discusses the features of cis-regulatory sequences in plants, technologies enabling their identification, characterization, and validation, their organization into functional cis-regulatory modules, their genomic distributions with respect to target genes, and the role of transposable elements in their evolution.  相似文献   

15.
16.
The elucidation of principles governing evolution of gene regulatory sequence is critical to the study of metazoan diversification. We are therefore exploring the structure and organizational constraints of regulatory sequences by studying functionally equivalent cis-regulatory modules (CRMs) that have been evolving in parallel across several loci. Such an independent dataset allows a multi-locus study that is not hampered by nonfunctional or constrained homology. The neurogenic ectoderm enhancers (NEEs) of Drosophila melanogaster are one such class of coordinately regulated CRMs. The NEEs share a common organization of binding sites and as a set would be useful to study the relationship between CRM organization and CRM activity across evolving lineages. We used the D. melanogaster transgenic system to screen for functional adaptations in the NEEs from divergent drosophilid species. We show that the individual NEE modules across a genome in any one lineage have independently evolved adaptations to compensate for lineage-specific developmental and/or genomic changes. Specifically, we show that both the site composition and the site organization of NEEs have been finely tuned by distinct, lineage-specific selection pressures in each of the three divergent species that we have examined: D. melanogaster, D. pseudoobscura, and D. virilis. Furthermore, by precisely altering the organization of NEEs with different morphogen gradient threshold readouts, we show that CRM organizational evolution is sufficient for explaining changes in enhancer activity. Thus, evolution can act on CRM organization to fine-tune morphogen gradient threshold readouts over a wide dynamic range. Our study demonstrates that equivalence classes of CRMs are powerful tools for detecting lineage-specific adaptations by gene regulatory sequences.  相似文献   

17.
18.
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.  相似文献   

19.
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found.Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号