首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
When grown on contaminated soil, hyperaccumulator plants contain high concentrations of metals which may return to the soil after senescence. This work was undertaken to assess the availability of Cd and Zn associated to the leaves of the hyperaccumulator Thlaspi caerulescens after incorporation into an uncontaminated soil. A Zn- and Cd- accumulator population of T. caerulescens was grown on a Cd- and Zn- contaminated soil previously labelled with 109Cd. Leaves (TCL) were harvested, dried, ground and incorporated into the soil at a rate of 2.07 mg Cd kg−1 and 51.9 mg Zn kg−1. Then a pot experiment was conducted for 3 months with rye grass (Lolium perenne) and T. caerulescens. Rye grass was harvested monthly and T. caerulescens at the end of the experiment. Plant biomass was measured, along with the concentration of Cd, Zn and 109Cd. Results showed that water-extractable metals in TCL were 69% for Zn and 33% for Cd. Addition of TCL to soil, depleted growth of rye grass, and improved that of T. caerulescens. At harvest, concentrations of both metals were increased in plants by TCL. Concentrations of Cd in rye grass increased with the cut number, while that of Zn decreased slightly. Rye grass extracted 1.6% of the total Cd and 0.9% of the total Zn, and T. caerulescens extracted up to 22.4% of the Cd and 7% of the Zn. About 94% of the Cd in rye grass and 86% in T. caerulescens was derived from TCL. In conclusion, metals associated with leaves of the hyperaccumulator T. caerulescens were very mobile after incorporation into the soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.  相似文献   

3.
Fast-growing tree species, such as willows, can benefit from sludge application. While sludges are good fertilizers, they may contain heavy metals which could reduce productivity and cause environment risks. The aims of the present research were to: i) determine the biomass production of Salix discolor Mühl. and Salix viminalis L. when supplied with various amounts of dried and pelleted sludge and ii) assess the uptake and accumulation of heavy metals. Trials were carried out using unrooted cuttings that were planted in large plastic pots containing sandy soil and grown outdoors for a 20-week period. Five doses of sludge were applied: the equivalents of 0 (T0), 40 (T1), 80 (T2), 120 (T3), 160 (T4) and 200 (T5) kg “available” N ha-1. Trees which received the highest dosage of sludge showed the best growth. Stem biomass was significantly greater for S. viminalis which had received sludge treatments. The relationship between the total biomass yield Y (g) and the rate of fertilization X (equivalent to kg of “available” nitrogen provided per hectare) is linear. Regression equations of predicted biomass production were established as follows: S. discolor, Y=28.36+0.56X and S. viminalis, Y=39.95+0.64X. For both species, the greatest stem biomass per g of N applied was produced with treatment 4 and 5. Amounts of nitrogen per leaf area (N/LA) and per dry leaf mass (N/DL) were higher for S. viminalis. The metal transfer coefficient did not vary between the species but was significantly different for Cd and Zn. Plants were able to absorb Cd and Zn, but were less able to absorb Ni, Hg, Cu, and Pb. It was concluded that the dried and pelleted sludge is a good fertilizer. S. discolor and particularly S. viminalis can be used as filters for the purification of wastewater sludge as well as for biomass production purposes. R F Huettl Section editor  相似文献   

4.
In order to enhance phytoremediation efficiency, we investigated the effects of dual inoculation with ectomycorrhizal fungi and the ectomycorrhiza associated bacteria Micrococcus luteus and Sphingomonas sp. on the growth and metal accumulation of willows (Salix viminalis x caprea) on contaminated soil. The bacterial strains were previously collected from sporocarps of ectomycorrhizal fungi. The bacteria increased plant growth and the mycorrhizal dependency of willows colonized with the ectomycorrhizal fungus Hebeloma crustuliniforme. The total cadmium (Cd) and zinc (Zn) accumulation in the shoot biomass was increased after inoculation with the fungal strain Hebeloma crustuliniforme in combination with Micrococcus luteus up to 53% and in combination with Sphingomonas sp. up to 62%, respectively. The dual inoculation in combination with Laccaria laccata did not increase the accumulation of Cd and Zn in the willows. We conclude that associated bacteria can enhance the ectomyorrhiza formation and growth of willows and, thereby, the Cd and Zn accumulation in the plant biomass. The results suggest that bacterial support of root growth promoting ectomycorrhizal fungi may be a promising approach to improve the remediation of metal-contaminated soils by using willows.  相似文献   

5.
Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha?1 (N. caerulescens) and up to 0.15 kg ha?1 (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha?1 (N. caerulescens) and up to 13.8 kg.ha?1 (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants.  相似文献   

6.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

7.
The presented study assessed the heavy metal contamination risk in a former sludge deposit field of the River Ruhr in Essen, Germany. Therefore, the temporal and spatial distribution in soils and plants, chemical fractionation, mobilization potential, and transfer characteristics have been investigated. Soil samples, roots and shoots of rushes (Juncus sp.), and stem wood disks of willows (Salix sp.) were analyzed for Zn, Cu, Pb, Ni, Cr, and Cd. Plant available and mobile heavy metal portions have been determined using a sequential extraction procedure. The results show that the soils and the rushes are highly contaminated, although there is a considerable decrease compared to initial concentrations some 20 years ago. The willows show only small heavy metal enrichment. pH induced mobilization potential in soil is high for Cd, Zn and Ni. Additionally, these elements contain high portions of plant-available fractions. High transfer rates from soil to roots and very high rates from roots to shoots of rushes have been determined for Cd and Zn, indicating an accumulation of these elements in shoots of rushes. The rushes reflect the temporal and spatial heavy metal distribution in soil and might thus be used as a bioindicator or for phytoremediation.  相似文献   

8.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

9.
The heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy metal polluted soils (metallicolous ecotype MET) and on soils with normal heavy metal content (non-metallicolous ecotype: NMET). In order to assess the extent and structure of variation in growth, shoot accumulation of Cd, Zn and mineral element (Ca, Mg, K, Fe), a MET ecotype from Belgium and a NMET ecotype from Luxembourg were studied. Seven maternal families from two populations of each ecotype were grown on both Cd and Zn contaminated soil. Although both ecotypes presented a similar heavy metal tolerance in the experimental conditions tested, they differed in several points. The MET populations had markedly higher biomass and higher root:shoot ratio compared to NMET populations. The Zn, and at lesser extent, the Cd hyperaccumulation capacity tended to be higher in the NMET populations. The same trend was observed for the foliar concentrations of Mg, Ca and Fe with NMET populations having higher concentrations compared to MET ones. Cd and Zn concentrations were negatively correlated with the biomass of both ecotype. However, the negative correlation between the Zn and biomass was much lower in MET ecotype suggesting a tighter control of internal Zn concentration in this ecotype. Finally, although the Cd phytoextraction capacity was similar in both ecotype, a higher Zn phytoextraction capacity was detected in NMET ecotype when these plants grow on moderate Cd and Zn concentrations.  相似文献   

10.
Zhao  F.J.  Lombi  E.  McGrath  S.P. 《Plant and Soil》2003,249(1):37-43
Thlaspi caerulescens is a Zn and Cd hyperaccumulator, and has been tested for its phytoremediation potential. In this paper we examine the relationships between the concentrations of Zn and Cd in soil and in T. caerulescens shoots, and calculate the rates of Zn and Cd extraction from soil. Using published data from field surveys, field and pot experiments, we show that the concentrations of Zn and Cd in the shoots correlate with the concentrations of Zn and Cd in soils in a log-linear fashion over three orders of magnitude. There is little systematic difference between different populations of T. caerulescens in the relationship between soil and plant Zn concentrations. In contrast, populations from southern France are far superior to those from other regions in Cd accumulation. Bioaccumulation factors (plant to soil concentration ratio) for Zn and Cd decrease log-linearly with soil metal concentration. Model calculations show that phytoremediation using T. caerulescens is feasible when soil is only moderately contaminated with Zn and Cd, and the phytoremediation potential is better for Cd than for Zn if the populations from southern France are used. Recent progress in the understanding of the mechanisms of Zn and Cd uptake by T. caerulescens is also reviewed.  相似文献   

11.
The ultimate goal of any soil remediation process should be not only to remove the contaminant(s) from the polluted site but to restore soil health as well. In consequence, reliable indicators of soil health are needed if we are to properly evaluate the efficiency of a soil remediation process. The aim of the current work was to determine the effect of metal phytoextraction, through the utilization of the Zn hyperaccumulator T. caerulescens, on biological parameters of soil health, on the assumption that biological indicators of soil health might be valid monitoring tools to assess the efficiency of a metal phytoextraction process. To this end, a short-term microcosm phytoextraction study was carried out, with two heavy metal polluted soils collected from an abandoned mine, to determine the effect of metal phytoextraction on soil biological parameters. Higher values of biomass C, basal respiration, substrate induced respiration, and β-glucosidase activity were observed in the presence of T. caerulescens plants, as compared to unplanted pots. Our data confirm the great capacity of T. caerulescens to phytoextract Zn from polluted soils and, interestingly, suggest that metal phytoextraction has indeed a beneficial effect on soil biological activity. It was concluded that the revegetation of these metal polluted soils with T. caerulescens could help activate their biochemical and microbial functionality.  相似文献   

12.
The heavy metal hyperaccumulator Thlaspi caerulescens is widespread in France on many kinds of sites and substrates, including Zn/Pb/Cd mine and smelter wastes, Ni-rich serpentine outcrops and a variety of nonmetalliferous soils. Thlaspi caerulescens is remarkable among the metallophytes of France because it accumulates Zn to high concentrations (almost always >0.1%, and often >1% in the dry matter) regardless of the total Zn concentration of the substrate. The extraordinary uptake of Zn from soils of normal Zn concentration draws attention to the need for studies of the mechanisms by which such mobilization and uptake can occur. Different populations of Thlaspi caerulescens in France show considerable variation in their ability to accumulate Cd; individuals in some populations contain as much as 0.1 to 0.4% Cd, the highest levels recorded in vascular plants. The hyperaccumulation of Ni (sometimes exceeding 1%) from serpentine soils in France is also noteworthy. Despite the generally low biomass, some very large individuals occur, giving good potential for selective breeding to improve the value of Thlaspi caerulescens for phytoremediation, especially of Cd. The high Zn uptake from all kinds of soils is a property shared by the related T. brachypetalum, and T. alpinum shows dual Zn- and Ni uptake, depending on the substrate. The extent to which other species of Thlaspi occurring in France exhibit metal accumulation is also discussed.  相似文献   

13.
Gasic K  Korban SS 《Planta》2007,226(5):1277-1285
Phytochelatins (PCs) are heavy metal binding peptides that play an important role in sequestration and detoxification of heavy metals in plants. In this study, our goal was to develop transgenic plants with increased tolerance for and accumulation of heavy metals from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A 35S promoter fused to a FLAG–tagged AtPCS1 cDNA was expressed in Indian mustard, and transgenic lines, designated pc lines, were evaluated for tolerance to and accumulation of Cd and Zn. Transgenic plants with moderate AtPCS1 expression levels showed significantly higher tolerance to Cd and Zn stress, but accumulated significantly less Cd and Zn than wild type plants in both shoot and root tissues. However, transgenic plants with highest expression of the transgene did not exhibit enhanced Cd and Zn tolerance. Shoots of Cd-treated pc plants had significantly higher levels of phytochelatins and thiols than wild-type plants. Significantly lower concentrations of gluthatione in Cd-treated shoot and root tissues of transgenic plants were observed. Moderate expression levels of phytochelatin synthase improved the ability of Indian mustard to tolerate certain levels of heavy metals, but at the same time did not increase the accumulation potential for Cd and Zn.  相似文献   

14.
Experiments in semi-natural conditions were undertaken to assess hemp metal tolerance and its ability to accumulate cadmium, nickel and chromium. Cannabis sativa was grown in two soils, S1 and S2, containing 27, 74, 126 and 82, 115, 139 g g–1 of Cd, Ni and Cr, respectively. After two months from germination and at ripeness, no significant alteration in plant growth or morphology was detected. On the contrary, a high hemp reactivity to heavy metal stress with an increase in phytochelatin and DNA content was observed during development, suggesting the Cannabis sativa ability to avoid cell damage by activating different molecular mechanisms. Metals were preferentially accumulated in the roots and only partially translocated to the above-ground tissues. The mean shoot Cd content was 14 and 66 g g–1 for S1 and S2 soil, respectively. Although not negligible concentrations they were about 100 times lower than those calculated for the hyperaccumulator Thlaspi caerulescens. Similarly Ni uptake was limited if compared with that of the Ni-hyperaccumulator Alyssum murale. Chromium uptake was negligible. As expected on the base of the metal concentration detected in ripe plants, no statistically significant variation in soil metal content was detected after one crop of hemp. Nevertheless, a consistent amount (g) of Cd and Ni is expected to be extracted by 1 ha biomass of hemp (about 10 t) per year and along the time a slow restoration of deeper soil portions can be obtained by its wide root system (at least 0,5 m deep). In addition, the possibilities of growing hemp easily in different climates and using its biomass in non-food industries can make heavy metal contaminated soils productive. This means economical advantage along with a better quality of soil.  相似文献   

15.
The in situ phytoextraction of cadmium from soils can only be achieved using plants that are both tolerant to high Cd concentrations and able to extract sufficient amounts of the metal. However, very few plant species are capable of remediating Cd polluted soils in a reasonable time frame. This paper aims to show that the population of the hyperaccumulator Thlaspi caerulescens J. & C. Presl. from Viviez (south of France), which has a high Cd-accumulating capability, is an efficient tool to remove Cd from contaminated soils. Roots of T. caerulescensViviez proliferate in hot spots of metals in soils which is particularly advantageous because of heterogeneity of the distribution of metal in polluted soils. Isotopic techniques showed that plants from this population acquire Cd from the same pools as non-accumulating species, but that it was much more efficient than non-hyperaccumulators at removing the metal from the soil labile pool. This is due: to (i) a specific rooting strategy, and (ii) a high uptake rate resulting from the existence in this population of Cd-specific transport channels or carriers in the root membrane. Growth and overall extraction can be improved with appropriate N fertilisation, supplied either as mineral fertilisers or uncontaminated sewage sludge. Selecting bigger plants is possible from within a suitable Cd-accumulating population to improve the phytoextraction process. Growing the Cd-accumulating populations results in a reduction in the availability of Cd and Zn as shown with field and lysimeter experiments conducted for several years. As a result, on a practical aspect, Cd hyperaccumulating populations of T. caerulescens may be used as a tool to efficiently reduce the availability of Cd in soils, providing appropriate populations are used.  相似文献   

16.
Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg?1 and 2000 mg Zn kg ?1 in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg ?1 in wood and 78 mg kg ?1 in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.  相似文献   

17.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

18.
In a 4-year lysimeter experiment, we investigated the effects of topsoil heavy metal pollution (3,000 mg kg−1 Zn, 640 mg kg−1 Cu, 90 mg kg−1 Pb and 10 mg kg−1 Cd) and (synthetic) acid rain (pH 3.5) on tree growth and water use efficiency of young forest ecosystems consisting of Norway spruce (Picea abies), willow (Salix viminalis), poplar (Populus tremula) and birch (Betula pendula) trees and a variety of understorey plants. The treatments were applied in a Latin square factorial design (contaminated vs uncontaminated topsoil, acidified rain vs ambient rain) to 16 open-top chambers, with 4 replicates each. Each open-top chamber contained two lysimeters, one with a calcareous, and the other with acidic subsoil. The four tree species responded quite differently to heavy metal pollution and type of subsoil. The fine root mass, which was only sampled at the end of the experiment in 2003, was significantly reduced by heavy metal pollution in P. abies, P. tremula and B. pendula, but not in S. viminalis. The metal treatment responses of above-ground biomass and leaf area varied between years. In 2002, the heavy metal treatment reduced above-ground biomass and leaf area in P. tremula, but not in the other species. In 2003, metals did not reduce above-ground growth in P. tremula, but did so in the other species. It appears that the responses in above-ground biomass and leaf area, which paralleled each other, were related to changes in the relative competitive strength of the various species in the two experimental years. S. viminalis gained relative to P. tremula in absence of metal stress, in particular on calcareous subsoil, while P. abies showed the largest increases in growth rates in all treatments. Above- and below-ground growth was strongly inhibited by acidic subsoil in S. viminalis and to a lesser degree also in P. abies. In P. abies, this subsoil effect was enhanced by metal stress. Acid rain was not found to have any substantial effect. Whole-system water use efficiency was reduced by metal stress and higher on calcareous than on acidic subsoil.  相似文献   

19.
This study used co-cultivated plants as a bioassay to test the hypothesis that the roots of the zinc-hyperaccumulating plant Thlaspi caerulescensmobilize Zn from less-available pools in the soil. Thlaspi caerulescens was grown in uncompartmentalised pots, or pots that were divided by solid or mesh barriers to limit the extent of root intermingling (rhizosphere interaction) with co-cultivated Thlaspi arvense or Festuca rubra. Thlaspi caerulescens did not increase the concentration of Zn in either indicator species, suggesting that T. caerulescens does not strongly mobilize Zn in its rhizosphere. The increase in the shoot mass of T. arvense when its roots were permitted to intermingle with those of T. caerulescens was explained by greater intensity of competition of T. arvense compared to T. caerulescens.There was no effect of co-cultivation with T. caerulescens on the shoot biomass of F. rubra. Despite the absence of increased Zn-availability to the co-cultivated species, the mass of Zn accumulated by T. caerulescens was 3-times greater than the mass of Zn depleted from the pool of extractable-Zn in the soil, measured by extraction with 1 M ammonium nitrate. The results are consistent with the hypothesis that the rapid Zn-uptake systems in the roots of T. caerulescens deplete the soluble-Zn at a rate equal to, or faster than that at which Zn is replenished to the soil solution via plant/microbially mediated mobilization or the Zn-buffering capacity of the soil.  相似文献   

20.
The existence of metal hyperaccumulator species demonstrates that plants have the genetic potential to remove toxic metals from contaminated soil. Possibly, one of the best-known hyperaccumulators is Thlaspi caerulescens. This species has been shown to accumulate very high Zn concentrations without manifesting any sign of toxicity. Thus, T. caerulescens represents an excellent experimental system for studying metal hyperaccumulation in plants as it relates to phytoremediation. In this article, we review the results of an investigation into the physiology, biochemistry, and molecular regulation of Zn transport and accumulation in T. caerulescens compared with a nonaccumulator relative T. arvense. Physiological studies focused on the use of 65Zn radiotracer flux techniques to characterize zinc transport and compartmentation in the root, and translocation to the shoot. Transport studies indicated that a number of Zn transport sites were stimulated in T. caerulescens, contributing to the hyperaccumulation trait. Thus, Zn influx into root and leaf cells, and Zn loading into the xylem was greater in T. caerulescens compared with the nonaccumulator T. arvense. The 4.5-fold stimulation of Zn influx into the roots of T. caerulescens was hypothesized to be due to an overexpression of Zn transporters in this species. Additionally, compartmental analysis (radiotracer wash out or efflux techniques) was used to show that Zn was sequestered in the root vacuole of T. arvense inhibiting Zn translocation to the shoot in this nonaccumulator species. Molecular studies focused on the cloning and characterization of Zn transport genes in T. caerulescens. Functional complementation of a yeast Zn transport-defective mutant with a T. caerulescens cDNA library constructed in a yeast expression vector resulted in the cloning of a Zn transport cDNA, ZNT1. Expression of ZNT1 in yeast allowed for a physiological characterization of this transporter. ZNT1 was shown to encode a high-affinity Zn transporter that can also mediate low-affinity Cd transport. Biochemical analyses indicated that enhanced Zn transport in T. caerulescens results from a constitutively high expression of ZNT1 in roots and shoots. These results suggest that overexpression of ZNT1 may be linked to an alteration of the Zn tolerance mechanism in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号