首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inner diameter and wall thickness of rat middle cerebral arteries (MCAs) were measured in vitro in both a pressure-induced, myogenically-active state and a drug-induced, passive state to quantify active and passive mechanical behavior. Elasticity parameters from the literature (stiffness derived from an exponential pressure-diameter relationship, beta, and elasticity in response to an increment in pressure, Einc-p) and a novel elasticity parameter in response to smooth muscle cell (SMC) activation, Einc-a, were calculated. beta for all passive MCAs was 9.11 +/- 1.07 but could not be calculated for active vessels. The incremental stiffness increased significantly with pressure in passive vessels; Einc-p (10(6) dynes/cm2) increased from 5.6 +/- 0.5 at 75 mmHg to 14.7 +/- 2.4 at 125 mmHg, (p < 0.05). In active vessels, Einc-p (10(6) dynes/cm2) remained relatively constant (5.5 +/- 2.4 at 75 mmHg and 6.2 +/- 1.0 at 125 mmHg). Einc-a (10(6) dynes/cm2) increased significantly with pressure (from 15.1 +/- 2.3 at 75 mmHg to 49.4 +/- 12.6 at 125 mmHg, p < 0.001), indicating a greater contribution of SMC activity to vessel wall stiffness at higher pressures.  相似文献   

2.
Hemolytic delta-toxin from Staphylococcus aureus was soluble in either water, methanol or chloroform/methanol (2 : 1, v/v). The toxin spread readily from distilled water into films with pressures (pi) of 10 dynes/cm on water and 30 dynes/cm on 6 M urea; from chloroform/methanol it produced 40 dynes/cm pressure on distilled water. The toxin adsorbed barely from water (pi = 1 dyne/ cm) but it did rapidly from 6 M urea (pi = 35 dynes/cm). The protein films had unusually high surface potentials, which increased with the film pressure and decreased with increasing both pH and urea concentration in the aqueous phase. The fluorescence of 1-aniline 8-naphthalene sulfonate with delta-toxin was much greater than that with RNAase and dipalmitoyl phosphatidylcholine itself, indicating probably a marked lipid-binding character of the toxin. By circular dichroism the alpha-helix content of delta-toxin was 42% in water, 45% in methanol, 24% in 6 M urea. Infrared spectroscopy showed predominant alpha-helix in both 2H2O and deuterated chloroform/methanol as well as in films spread from either solvent on 2H2O. In spreading from 6 M [2H]urea, in which the major infrared absorption was that of [2H]urea with peaks at 1600 and 1480 cm(-1), the delta-toxin film showed prevalently non-alpha-helix structures with major peak intensities at 1633 cm(-1) > 1680 cm(-1), indicating the appearance of new beta-aggregated and beta-antiparallel pleated sheet structures in the film. The data prove that (1) high pressure protein films can consist of alpha-helix as well as non-alpha-helix structures and, differently from another cytolytic protein, melittin, delta-toxin does not resume the alpha-helix conformation in going into the film phase from the extended chain in 6 M urea; (2) conformational changes are important in the transport of proteins from aqueous to lipid or membrane phase; (3) delta-toxin is by far more versatile in structural dynamics and more surface active than alpha-toxin.  相似文献   

3.
A sudden increase in the transmural pressure gradient across endothelial monolayers reduces hydraulic conductivity (L(p)), a phenomenon known as the sealing effect. To further characterize this endothelial adaptive response, we measured bovine aortic endothelial cell (BAEC) permeability to albumin and 70-kDa dextran, L(p), and the solvent-drag reflection coefficients (sigma) during the sealing process. The diffusional permeability coefficients for albumin (1.33 +/- 0.18 x 10(-6) cm/s) and dextran (0.60 +/- 0.16 x 10(-6) cm/s) were measured before pressure application. The effective permeabilities (measured when solvent drag contributes to solute transport) of albumin and dextran (P(ealb) and P(edex)) were measured after the application of a 10 cmH(2)O pressure gradient; during the first 2 h of pressure application, P(ealb), P(edex), and L(p) were significantly reduced by 2.0 +/- 0.3-, 2.1 +/- 0.3-, and 3.7 +/- 0.3-fold, respectively. Immunostaining of the tight junction (TJ) protein zonula occludens-1 (ZO-1) was significantly increased at cell-cell contacts after the application of transmural pressure. Cytochalasin D treatment significantly elevated transport but did not inhibit the adaptive response, whereas colchicine treatment had no effect on diffusive permeability but inhibited the adaptive response. Neither cytoskeletal inhibitor altered sigma despite significantly elevating both L(p) and effective permeability. Our data suggest that BAECs actively adapt to elevated transmural pressure by mobilizing ZO-1 to intercellular junctions via microtubules. A mechanical (passive) component of the sealing effect appears to reduce the size of a small pore system that allows the transport of water but not dextran or albumin. Furthermore, the structures of the TJ determine transport rates but do not define the selectivity of the monolayer to solutes (sigma).  相似文献   

4.
The effects of changes in transmural pressure on brachial artery mean blood velocity (MBV) were examined in humans. Transmural pressure was altered by using a specially designed pressure tank that raised or lowered forearm pressure by 50 mmHg within 0.2 s. Brachial MBV was measured with Doppler directly above the site of forearm pressure change. Pressure changes were evoked during resting conditions and after a 5-s handgrip contraction at 25% maximal voluntary contraction. The handgrip protocol selected was sufficiently vigorous to limit flow and sufficiently brief to prevent autonomic engagement. Changes in transmural pressure evoked directionally similar changes in MBV within 2 s. This was followed by large and rapid adjustments [-2.14 +/- 0.24 cm/s (vasoconstriction) during negative pressure and +2.14 +/- 0.45 cm/s (vasodilatation) during positive pressure]. These adjustments served to return MBV to resting levels. This regulatory influence remained operative after 5-s static handgrip contractions. Of note, changes in transmural pressure were capable of altering the timing of the peak MBV response (5 +/- 0, 2 +/- 0, 6 +/- 1 s ambient, negative, and positive pressure, respectively) as well as the speed of MBV adjustment (-2.03 +/- 0.18, -2.48 +/- 0.15, -0.84 +/- 0.19 cm x s(-1) x s(-1) ambient, negative, and positive pressure, respectively) after handgrip contractions. Vascular responses, seen with changes in transmural pressure, provide evidence that the myogenic response is normally operative in the limb circulation of humans.  相似文献   

5.
1. The interactions between cytochrome c (native and [(14)C]carboxymethylated) and monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin at the air/water interface was investigated by measurements of surface radioactivity, pressure and potential. 2. On a subphase of 10mm-or m-sodium chloride, penetration of cytochrome c into egg phosphatidylcholine monolayers, as measured by an increase of surface pressure, and the number of molecules penetrating, as judged by surface radioactivity, were inversely proportional to the initial pressure of the monolayer and became zero at 20dynes/cm. The constant of proportionality was increased when the cytochrome c was carboxymethylated or decreased when the phospholipid was hydrogenated, but the cut-off point remained at 20dynes/cm. 3. Penetrated cytochrome c could be removed almost entirely by compression of the phosphatidylcholine monolayer above 20dynes/cm. 4. With phosphatidic acid and cardiolipin monolayers on 10mm-sodium chloride the binding of cytochrome c was much stronger and cytochrome c penetrated into films nearing the collapse pressure (>40dynes/cm.). The penetration was partly electrostatically facilitated, since it was decreased by carrying out the reaction on a subphase of m-sodium chloride, and the relationship between the surface pressure increment and the initial film pressure moved nearer to that observed with phosphatidylcholine. 5. Surface radioactivity determinations showed that [(14)C]carboxymethylated cytochrome c was still adsorbed on phosphatidic acid and cardiolipin monolayers after the cessation of penetration. This adsorption was primarily electrostatic in nature because it could be prevented and substantially reversed by adding m-sodium chloride to the subphase and there was no similar adsorption on phosphatidylcholine films. 6. The penetration into and adsorption on the three phospholipid monolayers was examined as a function of the pH of the subphase and compared with the state of ionization of both the phospholipid and the protein, and the area occupied by the latter at an air/water interface. 7. It is concluded that the binding of cytochrome c to phospholipids can only be partially understood by a consideration of the ionic interaction between the components and that subtle conformational changes in the protein must affect the magnitude and stability of the complex. 8. If cytochrome c is associated with a phospholipid in mitochondria then cardiolipin would fulfil the characteristics of the binding most adequately.  相似文献   

6.
We used the acoustic reflection technique to measure the cross-sectional area of tracheal and bronchial airway segments of eight healthy adults. We measured airway area during a slow continuous expiration from total lung capacity (TLC) to residual volume (RV) and during inspiration back to TLC. Lung volume and esophageal pressure were monitored continuously during this quasi-static, double vital capacity maneuver. We found that 1) the area of tracheal and bronchial segments increases with increasing lung volume and transpulmonary pressure, 2) the trachea and bronchi exhibit a variable degree of hysteresis, which may be greater or less than that of the lung parenchyma, 3) extrathoracic and intrathoracic tracheal segments behaved as if they were subjected to similar transmural pressure and had similar elastic properties, and 4) specific compliance (means +/- SE) for the intrathoracic and bronchial segments, calculated with the assumption that transmural pressure is equal to the transpulmonary pressure, was significantly (P less than 0.05) smaller for the intrathoracic segment than for the bronchial segment: (2.1 +/- 2.0) X 10(-3) cmH2O-1 vs. (9.1 +/- 2.1) X 10(-3) cmH2O-1. Direct measurements of airway area using acoustic reflections are in good agreement with previous estimates of airway distensibility in vivo, obtained by radiography or endoscopy.  相似文献   

7.
Lung volumes and static lung compliance were measured in decapitated three day-old neonatal Long Evans' rat pups. Compliance was measured in situ (open chest method) using a water manometer and syringe system. Mean total lung capacity at 20 cm H2O pressure (TLC20) was 0.678 ml. Minimum lung volume after experimental inflation was 0.197 +/- 0.048 ml, and vital capacity was 0.56 ml (Vmax20). The mean lung compliance value for the approximate tidal loop (between 3 and 12 cm H2O) equalled 26.2 microliters air/cm H2O for the inflation limb and 23.1 microliters/cm H2O for the deflation limb.  相似文献   

8.
The elasticity and branching order of noncapillary microscopic blood vessels less than 100 microns diam were studied in human lungs obtained 7-30 h postmortem, using a silicone elastomer method that selectively filled pulmonary arterioles or venules. The lungs were inflated to 10 cmH2O pressure and a gradient of transmural vascular pressure of 0-17 cm H2O, from lobe base to apex, was established in the silicone-filled vascular system. Histological materials were obtained after airway fixation by formaldehyde solution and analyzed for vessel diameter in the branching order of 1, 2, and 3, with the smallest noncapillary vessel designated as order 1, in accord with the Strahler system. The change in vessel diameter within a branching order at different levels of transmural pressure is a derived measure of vascular elasticity expressed as compliance coefficient alpha, alpha Values are 0.128, 0.164, and 0.210 micron/cmH2O or 0.682, 0.472, and 0.354%/cmH2O, respectively, of orders 1-3 for arterioles and 0.187, 0.215, and 0.250 micron/cmH2O or 0.992, 0.612, and 0.424%/cmH2O, respectively, of orders 1-3 for venules. The percent is normalized with D0, which is the value of diameter (D) when the transmural pressure is zero. These data are compared with those for the cat where alpha = 0.274 for similar juxta-alveolar vessels.  相似文献   

9.
The purpose of this study was to examine whether antioxidants attenuate endotoxin-induced microvascular hyper-permeability for macromolecules in the hamster cheek pouch. Twenty-two adult male Syrian hamsters were anesthetized, and a removable plastic chamber was placed in the cheek pouch to observe and collect suffusate from the microvasculature. Fluorescent-labeled dextran (FITC-D; mol wt 150,000) was injected intravenously, and changes in the number of microvascular leaky sites and microvascular clearance of FITC-D were measured in five groups: saline control (group 1, n = 4), endotoxin (0.1 mg/ml) suffusion for 120 min (group 2, n = 6), endotoxin plus dimethyl sulfoxide (1.0 g/kg iv; group 3, n = 4), endotoxin plus allopurinol (30 mg/kg ip; group 4, n = 4), and endotoxin plus dimethyl sulfoxide and allopurinol (group 5, n = 4). The number of leaky sites and the FITC-D clearance were significantly higher in group 2 [45 +/- 18 (SD) sites/cm2 and 20 +/- 6 X 10(-6) ml/min, respectively; P less than 0.01] than in group 1 (7 +/- 6 sites/cm2 and 7 +/- 5 X 10(-6) ml/min), group 3 (9 +/- 5 sites/cm2 and 8 +/- 2 X 10(-6) ml/min), group 4 (11 +/- 7 sites/cm2 and 9 +/- 4 X 10(-6) ml/min), and group 5 (11 +/- 6 sites/cm2 and 7 +/- 1 x 10(-6) ml/min). The leaky sites appeared predominantly in postcapillary venules. There was a positive and significant correlation between the number of leaky sites and FITC-D clearance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Small-intestine submucosa (SIS) is cell-free, 100-mu-thick collagen derived from the small intestine. It has been used as a vascular graft and has the highly desirable ability to be remodeled to become histologically indistinguishable from native adjacent artery. To date there has been limited reporting of its preimplantation and explant mechanical properties as a vascular graft. In this study, compliance, elastic modulus, and burst pressure were measured on preimplant-tested 5- and 8-mm SIS grafts and two 60-day remodeled grafts. Seven prefabricated grafts were implanted in the carotid (n = 7) in dogs, which were sacrificed after 55-63 days. The animals (n = 4) weighed from 22 to 27 kg. One dog received a unilateral carotid graft, and 3 dogs received bilateral carotid grafts. The fabrication technique employed hand-suturing with either nonresorbable or resorbable sutures. None of the grafts had a patency failure. Angiograms taken at 1 month and just before explantation showed uniform flow and no dilation. At the time of explantation, all carotid grafts were found to be encased in fibrous tissue. The grafts made with nonresorbable sutures showed thicker tissue growth at the suture line compared with those made with the resorbable sutures. Along the suture line, the grafts made with resorbable sutures exhibited a more natural color than those sutured with nonresorbable sutures. When the explanted carotid grafts were slit open, the lumen was white, shiny, and glistening. The grafts sutured with nonresorbable sutures exhibited small areas of fibrin and red blood cells when the suture was within the lumen. The resorbable-sutured grafts did not exhibit this response. The mean compliance (percent diameter increase for a pressure rise from 80 to 120 mm Hg) was on average 4.6% (range, 2.9%-8.6%) for the 5-mm preimplant-tested grafts. For the 8-mm preimplant-tested grafts, the increase in diameter for the same pressure rise was 8.7%, on average (range, 7.2% to 9.5%). For comparison, the small-diameter SIS graft at the time of implantation was about one half as compliant as the adjacent dog carotid artery, about 4 times more compliant than a typical vein graft, and more than 10 times more compliant than synthetic vascular grafts. The compliance measured on two 60-day carotid grafts was 10.5% and 7.2%, respectively. This is midway between the original compliance value and the compliance of a typical canine carotid artery (14%), indicating that mechanical remodeling occurred. The modulus of elasticity (E) increased exponentially with increasing pressure according to E = E0e alpha P, where E0 is the zero-pressure modulus and alpha is the exponent that describes the rate of increase in E with pressure; the unit of measure for variables E, E0, and P is g/cm2. The mean value for E0 was 4106 gm/cm2 (range, 1348-5601). The mean value for alpha was 0.0059 (range, 0.0028-0.0125). At 100 mm Hg, the mean value for E was 8.03 x 10(6) dynes/cm2 (range, 4.95-15.7 x 10(6)). For a 60-day SIS graft implant, the elastic modulus at 100 mm Hg decreased from a high value at implant time to twice that of a typical native canine carotid artery. The mean burst pressure for 5.5-mm grafts was 3517 mm Hg (range, 2069-4654). The burst pressure of the remodeled carotid grafts averaged 5660 mm Hg. The burst pressure for a typical carotid artery is about 5000 mm Hg. The results of this preliminary study complement those of previous SIS-vascular-graft studies and add a new factor, namely that the mechanical properties of the remodeled graft approach those of the vessel it replaces.  相似文献   

11.
A hydrophobic, lipid- and pigment-free polypeptide from the chromatophore membrane of Rhodospirillum rubrum was spread from chloroform/methanol, pyridine and formic acid solutions at an air-water interface. Surface pressure versus area isotherms of the monolayers formed at the interface were partially dependent upon the spreading solvent used. From the surface area at 20 dynes/cm compression, an average molecular area of 12.9 nm2/molecule was calculated for a polypeptide monolayer spread from chloroform/methanol. Multilayers built up on germanium plates at different surface pressures were subjected to attenuated total reflection infrared spectroscopy. In all cases the amide I and II absorption bands were typical of alpha-helical and random conformations. Electron microscopy of transferred monolayers replicated by rotary platinum shadowing revealed domains of regular texture in specimens prepared at 20 dynes/cm. Such domains were virtually absent in specimens prepared at 10 and 30 dynes/cm. Light optical diffractometry of the ordered arrays yielded a smallest repetitive area of 13.5 nm2 which agrees well with the molecular area obtained from the monolayer surface. Although no drastic changes in secondary structure were detected in the course of this study, some conformational changes are indicated by solvent-dependent differences in the surface pressure versus area isotherms.  相似文献   

12.
Arachidonic acid (AA) metabolites are known to be potent vasoactive substances in the pulmonary circulation, whereas their influence on lung vascular permeability is still uncertain. We investigated the effect of AA bolus injection on the capillary filtration coefficient (Kf,C) of isolated rabbit lungs, recirculatingly perfused with Krebs-Henseleit albumin (1%) buffer. Kf,C was measured using repetitive sudden venous pressure elevations (7.5 Torr) and time zero extrapolation of the slope of the weight gain curve. It ranged from 1.3 to 2.4 cm3 X s-1 X Torr-1 X g-1 X 10(-4) in control lungs. Pulmonary arterial injection of AA (100 microM; in presence of 20 microM indomethacin to suppress pulmonary arterial pressure rise) during an acute hydrostatic challenge, but not at zero venous pressure, caused a greater than 10-fold increase in Kf,C. Vascular compliance was not altered. Additional experiments, performed under zero-flow conditions to avoid any ambiguity in microvascular pressure, corroborated the severalfold increase in vascular permeability, detectable within 3 min after AA application during acute hydrostatic challenge.  相似文献   

13.
We have measured the lateral diffusion coefficient (D), of active dansyl-labeled gramicidin C (DGC), using the technique of fluorescence photobleaching recovery, under conditions in which the cylindrical dimer channel of DGC predominates. In pure, hydrated, dimyristoylphosphatidylcholine (DMPC) multibilayers (MBL), D decreases from 6 X 10(-8) cm2/s at 40 degrees C to 3 X 10(-8) cm2/s at 25 degrees C, and drops 100-fold at 23 degrees C, the phase transition temperature (Tm) of DMPC. Above Tm, addition of cholesterol decreases D; a threefold stepwise drop occurs between 10 and 20 mol %. Below Tm, increasing cholesterol increases D; a 10-fold increase occurs between 10 and 20 mol % at 21 degrees C, between 20 and 25 mol % at 15 degrees C, and between 25 and 30 mol % at 5 degrees C. In egg phosphatidylcholine (EPC) MBL, D decreases linearly from 5 X 10(-8) cm2/s at 35 degrees C to 2 X 10(-8) cm2/s at 5 degrees C; addition of equimolar cholesterol reduces D by a factor of 2. Thus this transmembrane polypeptide at low membrane concentrations diffuses quite like a lipid molecule. Its diffusivity in lipid mixtures appears to reflect predicted changes of lateral composition. Increasing gramicidin C (GC) in DMPC/GC MBL broadened the phase transition, and the diffusion coefficient of the lipid probe N-4-nitrobenzo-2-diazole phosphatidylethanolamine (NBD-PE) at 30 degrees C decreases from 8 X 10(-8) cm2/s below 5 mol % GC to 2 X 10(-8) cm2/s at 14 mol % GC; D for DGC similarly decreases from 4 X 10(-8) cm2/s at 2 mol % GC to 1.4 X 10(-8) cm2/s at 14 mol % GC. Hence, above Tm, high concentrations of this polypeptide restrict the lateral mobility of membrane components.  相似文献   

14.
In 13 healthy volunteers a computerized experimental set-up was used to measure the electrical impedance of the upper arm at changing cuff pressure, together with the finger arterial blood pressure in the contralateral arm. On the basis of a model for the admittance response, the arterial blood volume per centimeter length (1.4 +/- 0.3 ml/cm), the venous blood volume as a percentage of the total blood compartment (49.2 +/- 12.6%), and the total arterial compliance as a function of mean arterial transmural pressure were estimated. The effective physiological arterial compliance amounted to 2.0 +/- 1.3 microliters.mmHg-1.cm-1 and the maximum compliance to 33.4 +/- 12.0 microliters.mmHg-1.cm-1. Additionally, the extravascular fluid volume expelled by the occluding cuff (0.3 +/- 0.3 ml/cm) was estimated. These quantities are closely related to patient-dependent sources of an unreliable blood pressure measurement and vary with changes in cardiovascular function, such as those found in hypertension. Traditionally, a combination of several methods is needed to estimate them. Such methods, however, usually neglect the contribution of extravascular factors.  相似文献   

15.
The myogenic response, the inherent ability of blood vessels to rapidly respond to changes in transmural pressure, is involved in local blood flow autoregulation. Animal studies suggest that aging impairs the myogenic response. The purpose of this study was to compare the effects of changes in transmural pressure on mean blood velocity (MBV, cm/s) in young and older subjects. Twelve younger men and women (25 +/- 1 yr) were gender and body composition matched to twelve older men and women (65 +/- 1 yr). A specially designed tank raised or lowered forearm pressure by 50 mmHg within 0.2 s. Brachial artery MBV was measured directly above the site of forearm pressure change using Doppler methods. In response to increasing transmural pressure (i.e., release of +50 mmHg), older subjects compared with younger subjects had significantly lower peak MBV (Delta 12.43 +/- 1.16 vs. Delta 17.97 +/- 2.01 cm/s; P < 0.05), reduced rates in the dynamic fall of MBV after peak values were achieved (vasoconstriction) (-1.88 +/- 0.17 vs. -2.90 +/- 0.28 cm.s(-1).s(-1); P < 0.05), and lower MBV values with sustained suction. In response to decreasing transmural pressure (i.e., change to +50 mmHg), there was a significantly greater increase in MBV (Delta peak flow from trough 7.71 +/- 1.32 vs. 4.38 +/- 0.71 cm/s; P < 0.05) and a trend toward a greater rate of rise in MBV (vasodilation; 1.61 +/- 0.29 vs. 0.96 +/- 0.21 cm.s(-1).s(-1); P = 0.08) in the older subjects. Older subjects compared with the younger subjects exhibited decreased dynamic vasoconstriction, enhanced steady-state constriction, as well as evidence for enhanced dynamic vasodilation responses to sustained alterations in forearm transmural pressure.  相似文献   

16.
Mutation in collagen gene induces cardiomyopathy in transgenic mice   总被引:1,自引:0,他引:1  
In many remodeling tissues, such as the heart, collagen degradation to provide new integrin-binding sites is required for survival. However, complete loss of integrin signaling due to disconnection from extracellular matrix (ECM) leads to apoptosis and dilatation. To test the hypothesis that a mutation in type I collagen gene induces cardiomyopathy, we employed a metalloproteinase-resistant collagen mutant homozygous transgenic male (B6,129-Colla-1) and compared with age-sex matched wildtype C57BL/J6 control mice. At the age of 38-42 weeks, aortic and left ventricle (LV) pressure were measured. The LV wall thickness and diameter were measured by a digital micrometer. The levels of matrix metalloproteinase-2 (MMP-2) activity and cardiospecific tissue inhibitor of metalloproteinase-4 (TIMP-4) were measured by zymography and Western blot analyses, respectively. The levels of collagenolysis were measured by Western blot using anti-collagen antibody. In transgenic and wildtype mice, end-diastolic pressure (EDP) was 8.3 +/- 1.7 and 6.5 +/- 1.1 mmHg; LV diameter was 3.43 +/- 0.07 and 2.94 +/- 0.05 mm; wall thickness was 1.18 +/- 0.03 and 1.28 +/- 0.04 mm; end-diastolic wall stress was 600 +/- 158 and 347 +/- 49 dynes/cm(2), respectively. The increase in LV wall stress was associated with increased MMP-2 activity, increased collagenolysis, and decreased levels of TIMP-4. This leads to reduced elastic compliance in collagen mutant transgenic mice. The occurrence of cardiomyopathy in adult Colla-1 mice may be a significant confounding factor as it may be indicative of increased basal levels of ECM disruption. This phenotype is what would be expected if collagen degradation normally supplies integrin ligands during cardiac muscle remodeling.  相似文献   

17.
Transmural nerve stimulation following sympathetic (guanethidine 10(-4) mol/L, phenoxybenzamine 2 X 10(-5) mol/L, propanolol 2 X 10(-6) mol/L) and muscarinic blockade (atropine 5 X 10(-5) mol/L) produces a relaxatory response in canine saphenous veins contracted with prostaglandin F2 alpha. This relaxatory response was shown previously to be resistant to tetrodotoxin. Transmural nerve stimulation (10 V, 1.0 ms) was applied as intermittent trains of stimuli of 30 s duration at frequencies of 1-32 Hz. The veins showed a frequency dependent relaxation (maximum 2.65 +/- 0.20 g). The stimulations were repeated in the presence of lignocaine (10(-3) mol/L), apamin (10(-8) mol/L), ascorbic acid (10(-4) mol/L), or catalase (50 micrograms/mL). The relaxatory response was unaffected by apamin, scorpion toxin, superoxide dismutase, ascorbic acid, and catalase (p greater than 0.05). However, lignocaine (10(-3) mol/L) reduced significantly the relaxatory response to transmural nerve stimulation in this preparation (p less than 0.05). In a separate group of veins, lignocaine (10(-3) mol/L)l abolished the contractile response to transmural nerve stimulation with little effect upon the contractile response to exogenous noradrenaline and the relaxatory responses to isoprenaline and sodium nitrite. These findings support the proposition that the nonadrenergic, noncholinergic tetrodotoxin-resistant relaxatory response observed with transmural nerve stimulation in the canine saphenous vein is mediated by a neural mechanism.  相似文献   

18.
There are sex-related differences in venous compliance and capillary filtration in the lower limbs, which to some extent can explain the susceptibility to orthostatic intolerance in young women. With age, venous compliance and capacitance are reduced in men. This study was designed to evaluate age-related changes in venous compliance and capillary filtration in the lower limbs of healthy women. Included in this study were 22 young and 12 elderly women (23.1 +/- 0.4 and 66.4 +/- 1.4 yr). Lower body negative pressure (LBNP) of 11, 22, and 44 mmHg created defined transmural pressure gradients in the lower limbs. A plethysmographic technique was used on the calf to assess venous capacitance and net capillary filtration. Venous compliance was calculated with the aid of a quadratic regression equation. No age-related differences in venous compliance and capacitance were found. Net capillary filtration and capillary filtration coefficient (CFC) were lower in elderly women at a LBNP of 11 and 22 mmHg (0.0032 vs. 0.0044 and 0.0030 vs. 0.0041 ml.100 ml(-1).min(-1).mmHg(-1), P < 0.001). At higher transmural pressure (LBNP, 44 mmHg), CFC increased by approximately 1/3 (0.010 ml.100 ml(-1).min(-1).mmHg(-1)) in the elderly (P < 0.001) but remained unchanged in the young women. In conclusion, no age-related decrease in venous compliance and capacitance was seen in women. However, a decreased CFC was found with age, implying reduced capillary function. Increasing transmural pressure increased CFC in the elderly women, indicating an increased capillary susceptibility to transmural pressure load in dependent regions. These findings differ from earlier studies on age-related effects in men, indicating sex-specific vascular aging both in the venous section and microcirculation.  相似文献   

19.
The lateral motion of membrane lipids on lipopolysaccharide-stimulated murine B lymphocytes was measured using photobleaching recovery techniques. The mobility of the phospholipid analog 3,3'-dioctadecylindocarbocyanine iodide (DiI) was measured at 37 degrees C on B lymphocytes 48 h after stimulation by various concentrations of lipopolysaccharide. DiI mobility on lymphoblasts from cultures stimulated with 10 micrograms/ml lipopolysaccharide was reduced 50% compared with unstimulated, small B cells. However, both lower and higher lipopolysaccharide concentrations caused some decrease in lipid mobility. Lipid mobility was measured on B cells stimulated with 10 micrograms/ml lipopolysaccharide at zero time, on lymphoblasts at 18, 24, 48 and 72 h, and on immunoglobulin (Ig) -secreting lymphocytes at 96 h. The diffusion coefficient of DiI on both control and lipopolysaccharide-treated cells at zero time is 6.3 X 10(-9) cm2 X s-1. This value remains unchanged for unstimulated cells over 72 h. Lipid mobility of lipopolysaccharide-activated lymphoblasts decreased during incubation with lipopolysaccharide to 5.0, 3.4, 2.8 and 2.4 X 10(-9) cm2 X s-1 after 18, 24, 48 and 72 h, respectively. DiI mobility on immunoglobulin (Ig) -secreting lymphocytes identified at the foci of Protein A-coated sheep red blood cells plaques is 8.6 X 10(-9) cm2 X s-1, a value similar to that of unstimulated B cells. The effect of introducing various concentrations of a synthetic glucocorticoid, triamcinolone acetonide (TA), to 48 h lipopolysaccharide-stimulated cells for 6 h was examined. Maximal TA effect was observed at a concentration of 10(-7) M, which caused an increase in lipid mobility to 7.5 X 10(-9) cm2 X s-1. Exposing resting B cells (t = 0) or lymphoblasts (t = 24, 48 or 72 h) to TA for 3 h had no effect on lipid mobility. Treatment for 6 h with 10(-7) MTA increased DiI diffusion to 12.6, 9.9, 7.5 and 6.8 X 10(-9) cm2 X s-1 on control cells and on 24, 48 and 72 h lipopolysaccharide-activated lymphoblasts, respectively. A longer incubation of 12 h with 10(-7) MTA caused no further change in lipid lateral diffusion. The response was glucocorticoid-specific. In lymphoblasts (48 h) incubated an additional 6 h with 10(-7) MTA and a 100-fold excess of cortexolone or progesterone, the increase in lipid mobility was substantively blocked; estradiol and testosterone had no effect on lipid lateral diffusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Recent studies in humans have suggested sex differences in venous compliance of the lower limb, with lower compliance in women. Capillary fluid filtration could, however, be a confounder in the evaluation of venous compliance. The venous capacitance and capillary filtration response in the calves of 12 women (23.2 +/- 0.5 years) and 16 men (22.9 +/- 0.5 years) were studied during 8 min lower body negative pressure (LBNP) of 11, 22, and 44 mmHg. Calf venous compliance is dependent on pressure and was determined using the first derivative of a quadratic regression equation that described the capacitance-pressure relationship [compliance = beta1 + (2 x beta2 x transmural pressure)]. We found a lower venous compliance in women at low transmural pressures, and the venous capacitance in men was increased (P < 0.05). However, the difference in compliance between sexes was reduced and not seen at higher transmural pressures. Net capillary fluid filtration and capillary filtration coefficient (CFC) were greater in women than in men during LBNP (P < 0.05). Furthermore, calf volume increase (capacitance response + total capillary filtration) during LBNP was equivalent in both sexes. When total capillary filtration was not subtracted from the calf capacitance response in the calculation of venous compliance, the sex differences disappeared, emphasizing that venous compliance measurement should be corrected for the contribution of CFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号