首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell envelope of Escherichia coli B was investigated with the freeze-etching technique. A considerable gain in visible structural detail over more conventional electron microscopic techniques was obtained. The inner surface of the plasma membrane revealed a smooth surface sparsely studded with particles measuring from 5 to 10 nm in diameter, whereas the outer surface of the plasma membrane showed many more particles of corresponding diameter. The freeze-etched cell wall appeared to be a multilayered structure. The innermost layer could be observed as a profile studded with closely packed elements of about 10 nm in diameter. External to this layer was a smooth surface bordering the outermost cell wall layer. When frozen in the absence of glycerol the outermost surface observed in the cell wall was smooth, but when grown in the presence of glycerol it had a "wavy" appearance with small particles attached to it. The observations support current concepts on the ultrastructure of the enterobacterial cell envelope.  相似文献   

2.
Evidence is presented suggesting the existence of a natural ribosome-membrane complex. A reconstruction system is described wherein free ribosomes form a complex which appears to involve cell fragments. The reconstructed complex is similar in stability to the inferred natural complex. The reconstructed complex is generated by lysozyme, and it is concluded that at least part of the inferred natural complex is also generated by lysozyme. These results are discussed with reference to existing data concerning certain membrane-associated systems in bacteria.  相似文献   

3.
The surface area per repeating murein unit (i.e. per molecule of diaminopimelate) has been determined for the cell envelopes of the Escherichia coli strains K-12 and W. This area was constantly found to be 1.3 nm(2). Using this value and other previously determined properties of E. coli murein, a three-dimensional model of murein is proposed. The model specifies a monomolecular layer in which disaccharide units are each 1.03 nm long, and the polysaccharide chains, all parallel, are 1.25 nm apart. The cross-linking peptide side-chains have the same atomic coordinates and are arranged above or below the polysaccharide chains.  相似文献   

4.
The composition of the cell envelope of a heptose-deficient lipopolysaccharide mutant of Escherichia coli, GR467, was studied after fractionation into its outer and cytoplasmic membrane components by means of sucrose density gradient centrifugation. The outer membrane of GR467 had a lower density than that of its parent strain, CR34. Analysis of the fractionated membranes of GR467 indicated that the phospholipid-to-protein ratio had increased 2.4-fold in the outer membrane. The ratio in the mutant cytoplasmic membrane was also increased, although to a lesser extent. By employing a third parameter, the lipid A content of the outer membrane, it was found that the observed phospholipid-to-protein change in the outer membrane was due predominantly to a decrease in the relative amount of protein. This decrease in protein was particularly significant, since it was concomitant with a 68% decrease in the lipid A recovered in the outer membrane of GR467 relative to the lipid A recovered in the outer membrane of CR34. Similar findings were observed in a second heptose-deficient mutant of E. coli, RC-59. The apparent protein deficiency in GR467 was further studied by subjecting solubilized envelope proteins to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was found that major envelope proteins which were localized in the outer membrane were greatly diminished in GR467. Two revertants of GR467 with the wild-type amounts of heptose had wild-type relative levels of protein in their outer membranes. A partial heptose revertant had a relative level of protein in its outer membrane between those of the mutant and wild type.  相似文献   

5.
Mutants of Escherichia coli which have a defect in their permeability barrier were selected. The technique used was to employ a strain of E. coli having a deletion in the gene for lactose permease and to select for mutants which can grow on lactose at 40 C. Twenty such mutants were isolated and six of these were found to be more sensitive to actinomycin D, sodium deoxycholate, and sodium dodecyl sulfate than was the parental strain. They were also more sensitive to the antibiotics vancomycin and bacitracin, which inhibit peptidoglycan biosynthesis. These mutants were no more sensitive to several different colicins or phages than was the wild-type strain. One of the mutants selected by this technique has an abnormal morphology when grown on certain carbon sources in minimal medium, and this mutant is more extensively studied in the accompanying paper.  相似文献   

6.
The cell wall of the gram-negative bacterium Acinetobacter species strain MJT/F5/5 shows in thin section an external “additional” layer, an outer membrane, an intermediate layer, and a dense layer. Negatively stained preparations showed that the additional layer is composed of hexagonally arranged subunits. In glycerol-treated preparations, freeze-etching revealed that the cell walls consist of four layers, with the main plane of fracture between layers cw 2 and cw 3. The surface of [Formula: see text] 2 consisted of densely packed particles, whereas [Formula: see text] 3 appeared to be fibrillar. In cell envelopes treated with lysozyme by various methods, the removal of the dense layer has detached the outer membrane and additional layer from the underlying layers, as shown in thin sections. When freeze-etched in the absence of glycerol, these detached outer membranes with additional layers fractured to reveal both the faces [Formula: see text] 2 and [Formula: see text] 3 with their characteristic surface structures, and, in addition, both the external and internal etched surfaces were revealed. This experiment provided conclusive evidence that the main fracture plane in the cell wall lies within the interior of the outer membrane. This and other evidence showed that the corresponding layers in thin sections and freeze-etched preparations are: the additional layer, cw 1; the outer membrane, cw (2 + 3); and the intermediate and dense layers together from cw 4. Because of similarities in structure between this Acinetobacter and other gram-negative bacteria, it seemed probable that the interior of the outer membrane is the plane most liable to fracture in the cell walls of most gram-negative bacteria.  相似文献   

7.
Cell wall and membrane subfractions of the cell envelope of Escherichia coli have been isolated by a procedure involving particle electrophoresis and sucrose gradient density centrifugation. The lipid content of each fraction has been investigated. The individual phospholipids of both fractions are quantitatively similar except that the proportion of lysophosphatidylethanolamine is greater in the wall than in the membrane. Fatty acid analysis of the phospholipids of each fraction revealed that the wall phospholipids contain a greater proportion of palmitic acid. Coenzyme Q is almost exclusively localized in the cell membrane.  相似文献   

8.
An envelope preparation containing the cell wall and cytoplasmic membrane of Escherichia coli was obtained by breaking the cells with a French pressure cell and sedimentating the envelope fraction by ultracentrifugation. This fraction was prepared for polyacrylamide gel electrophoresis by dissolving the protein in an acidified N,N'-dimethylformamide, removing lipids by gel filtration in the same organic solvent and removing the solvent by dialysis against aqueous urea solutions. More than 80% of the total protein of the envelope fraction was recovered in soluble form. Electrophoresis on sodium dodecyl sulfate-containing gels yielded from 20 to 30 well-resolved bands of protein. One major protein band was observed on the gels. This protein had a molecular weight of 44,000 and accounted for as much as 40% of the total protein of the envelope fraction. A double-labeling technique was used to examine the protein composition of the envelope fraction from cells grown under different sets of conditions which result in large changes in the levels of membrane-bound oxidative enzymes. These changes in growth conditions resulted in only minor alterations in the protein profiles observed on the gels, suggesting that this organism is able to adapt to changes in growth environment with only minor modifications of the major proteins of the cell envelope.  相似文献   

9.
Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, is considered to play specific roles in various cellular processes that are essential for cell viability. A null mutation of pgsA, which encodes phosphatidylglycerophosphate synthase, does indeed confer lethality. However, pgsA null mutants are viable if they lack the major outer membrane lipoprotein (Lpp) (lpp mutant) (S. Kikuchi, I. Shibuya, and K. Matsumoto, J. Bacteriol. 182:371-376, 2000). Here we show that Lpp expressed from a plasmid causes cell lysis in a pgsA lpp double mutant. The envelopes of cells harvested just before lysis could not be separated into outer and inner membrane fractions by sucrose density gradient centrifugation. In contrast, expression of a mutant Lpp (LppdeltaK) lacking the COOH-terminal lysine residue (required for covalent linking to peptidoglycan) did not cause lysis and allowed for the clear separation of the outer and inner membranes. We propose that in pgsA mutants LppdeltaK could not be modified by the addition of a diacylglyceryl moiety normally provided by phosphatidylglycerol and that this defect caused unmodified LppdeltaK to accumulate in the inner membrane. Although LppdeltaK accumulation did not lead to lysis, the accumulation of unmodified wild-type Lpp apparently led to the covalent linking to peptidoglycan, causing the inner membrane to be anomalously anchored to peptidoglycan and eventually leading to lysis. We suggest that this anomalous anchoring largely explains a major portion of the nonviable phenotypes of pgsA null mutants.  相似文献   

10.
Membrane-associated folded chromosomes isolated from Escherichia coli in the presence of spermidine sedimented at about 5,800S. The folded chromosome and the membrane fragment were each stable in the absence of the other; a 1,700S folded chromosome was obtained after removal of the membrane by a Sarkosyl treatment, and a 4,000S membrane fragment remained after digestion of the chromosomal DNA with deoxyribonuclease I. The interaction between the folded chromosome and the membrane fragment was stable, and, even when the DNA was unfolded, both components remained associated and cosedimented. The large frictional effect of the unfolded DNA reduced the sedimentation rate of the complex to about 2,000S. Partial removal of this unfolded DNA with restriction endonucleases caused the membrane fragments and the remaining associated DNA to sediment faster, at about 3,500S. The DNA remaining associated with the membrane fragments after restriction endonuclease treatment, about 4.5% of the total DNA when EcoRI was used, was indistinguishable from the DNA released from the membranes by three criteria: (i) DNA size distribution in agarose gels after electrophoresis, (ii) reassociation kinetics, and (iii) thermal elution from hydroxylapatite. This finding, that random DNA sequences rather than specific ones were responsible for the majority of the DNA-membrane interactions, argues against the folded chromosome's being a static structure with specific DNA sequences interacting with the cell envelope.  相似文献   

11.
12.
Envelope fraction I prepared from a ?X174 sensitive host, KD4301, showed a strong eclipsing activity, while the lipopolysaccharide (LPS) fraction showed a weak activity. The eclipsing activity in envelope fraction I was sensitive to heat treatment, while that in the LPS fraction was insensitive. When the complete phage particles (114S) were treated with envelope fraction I, the eclipsed particles (70S) and a rapidly sedimenting component were obtained, but when they were treated with LPS, only 70S eclipsed particles were obtained. Electron microscopic observation showed that there were two types of eclipsed particles formed on treatment with fraction I; in one of them phage DNA was extruded from the phage particles as a thick bundle, and in the other more than 95% of the phage DNA was extruded from the phage particles. The rapidly sedimenting component was the membrane-eclipsed particle complex. LPS gave only one type of eclipsed particles in which DNA was extruded as a thick bundle. These results indicate that a heat labile component in the cell envelopes other than LPS is involved in the extrusion of ?X174 DNA.  相似文献   

13.
Linear Cell Growth in Escherichia coli   总被引:12,自引:0,他引:12       下载免费PDF全文
Growth was studied in synchronous cultures of Escherichia coli, using three strains and several rates of cell division. Synchrony was obtained by the Mitchison-Vincent technique. Controls gave no discernible perturbation in growth or rate of cell division. In all cases, mean cell volumes increased linearly (rather than exponentially) during the cycle except possibly for a small period near the end of the cycle. Linear volume growth occurred in synchronous cultures established from cells of different sizes, and also for the first volume doubling of cells prevented from division by a shift up to a more rapid growth rate. As a model for linear kinetics, it is suggested that linear growth represents constant uptake of all major nutrient factors during the cycle, and that constant uptake in turn is established by the presence of a constant number of functional binding or accumulation sites for each growth factor during linear growth of the cell.  相似文献   

14.
A method of separating envelope proteins by two-dimensional polyacrylamide gel electrophoresis is described. Escherichia coli envelopes (inner and outer membranes) were prepared by French pressing and washed by repeated centrifugation. Membrane proteins were solubilized with guanidine thiocyanate and were dialyzed against urea prior to two-dimensional electrophoretic analysis. The slab gel apparatus and conditions were similar to the technique developed by Metz and Bogorad (1974) for the separation of ribosomal proteins. This separation occurs in 8 M urea for the first dimension and in 0.2% sodium dodecyl sulfate for the second dimension. The technique separates about 70 different membrane proteins in a highly reproducible fashion according to both intrinsic charge and molecular weight. Some examples of alterations in the membrane protein pattern are demonstrated. These alterations are caused by a mutation affecting a sugar transport system and by growth in the presence of D-fucose, inducer of the transport system. A further example of membrane protein changes introduced by growth at the nonpermissive temperature of a temperature-sensitive cell division mutant is shown. Finally, it is demonstrated that the major outer membrane component of Escherichia coli K-12 contains more than four proteins of similar molecular weight.  相似文献   

15.
The rigid cell wall peptidoglycan (murein) is a single giant macromolecule whose shape determines the shape of the bacterial cell. Insight into morphogenetic mechanism(s) responsible for determining the shape of the murein sacculus itself has begun to emerge only in recent years. The discovery that MfreB and Mbl are cytoskeletal actin homologues that form helical structures extending from pole to pole in rod-shaped cells has opened an exciting new field of microbial cell biology. MreB (in Gram-negative rods) and Mbl (in Gram-positive species) are essential for murein synthesis along the lateral wall and hence, the rod shape of the cell. Known members of the morphogenetic system include MreB (or Mbl), MreC, MreD and PBP2, but Rod A and murein biosynthetic enzymes involved in peptidoglycan precursor synthesis and assembly are likely to be recruited to the same multimolecular apparatus. However, the actual role of MreB in assembly of the morphogenetic complex is still not clear and little is known about regulatory mechanisms controlling the switch from lateral murein elongation to septa1 murein synthesis at the time of cell division.  相似文献   

16.
17.
Regulation of Cell Division in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
The rate of cell division was measured in cultures of Escherichia coli B/r strain after periods of partial or complete inhibition of deoxyribonucleic acid (DNA) synthesis. The rate of DNA synthesis was temporarily decreased by removing thymidine from the growth medium or replacing it with 5-bromouracil. After restoration of DNA synthesis, a temporary period of accelerated cell division was observed. The results were consistent with the idea that chromosome replication begins when an initiator complement of fixed size accumulated in the cell. The increase in the potential for the initiation of new replication points during inhibition of DNA synthesis results in an increase in the rate of cell division after an interval which encompasses the time for the arrival of these replication points to the termini of the chromosomes and the time from this event to division.  相似文献   

18.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

19.
When Escherichia coli B, labeled by prior growth in 14C-glucose, are infected with T4 phage there is a rapid release of 14C-nondialyzable material into the medium. About half of this material is derived from the cell envelope as evidenced by its content of phospholipid and lipopolysaccharide and its buoyant density upon isopycnic ultracentrifugation of 1.19 g/cm3. It is similar in its gross chemical and physical properties to envelope material released at a lower rate from growing uninfected cells or from cells whose protein synthesis is inhibited by chloramphenicol (22). The rate of release of this envelope material at a multiplicity of infection (MOI) of 10 is greatest in the first minute after infection, and release is completed by 4 min. The rate of its release, as a function of MOI at 2 min after infection, is greatest at low MOI (e.g., MOI 2 and 4); in addition, the release does not continue above MOI 30. The main conclusion derived from the data is that phage, as part of the process of adsorption and injection of DNA, cause an increased release of envelope substance from the cells. With the assumption that all of the envelope material released is derived from the outer envelope, it is estimated that uninfected cells release 20 to 30% of their outer envelope per hour, whereas infected cells release 30% in 2 min at MOI 30. Further, because release does not continue at high MOI, this phenomenon is not considered to be a direct cause of lysis from without. Data are also presented on the amounts of other non-dialyzable 14C-components released and on the differences in the kinetics of release from chloramphenicol-treated cells compared to phage-infected cells. To avoid the possibility that the release is due to phage lysozyme which is an adventitious “contaminant” of wild-type phage, a phage mutant (T4BeG59s) devoid of this enzyme was used in these experiments.  相似文献   

20.
When the envelope fraction of Escherichia coli was treated by trypsin, about 40% of total envelope proteins were removed from the fraction without changing its phospholipid content. Analysis of envelope proteins by acrylamide gel electrophoresis in 0.5% sodium dodecyl sulfate revealed that trypsin treatment was very specific; one of the major proteins (molecular weight, 38,000) and all proteins of molecular weight greater than 70,000 were completely removed by the treatment. On the other hand, three other major proteins were found to be resistant to the treatment, including protein Y, which was previously shown to be related to deoxyribonucleic acid replication. The trypsin treatment of the envelope fractions composed of a five electron-dense layered structure formed vesicles with a triple-layered membrane (two electron-dense layers). Pronase treatment of the envelope fraction removed about 60% of the envelope proteins without changing its phospholipid content. A major protein of molecular weight of 58,000 was found to be the only protein resistant to the Pronase treatment. Application of these treatments is useful for purification and structural studies of envelope proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号