首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tilapia fish Oreochromis alcalicus grahami from Kenya has adapted to living in waters at pH 10.5 by excreting the end product of nitrogen metabolism as urea rather than as ammonia directly across the gills as occurs in most fish. The level of activity in liver of the first enzyme in the urea cycle pathway, carbamoyl-phosphate synthetase III (CPSase III), is too low to account for the observed high rates of urea excretion. We report here the surprising finding that CPSase III and all other urea cycle enzyme activities are present in muscle of this species at levels more than sufficient to account for the rate of urea excretion; in addition, the basic kinetic properties of the CPSase III appear to be different from those of other known type III CPSases. The sequence of the CPSase III cDNA is reported as well as the finding that glutamine synthetase activity is present in liver but not in muscle. This unusual form of adaptation may have occurred because of the apparent impossibility of packaging the needed amount of urea cycle enzymes in liver.  相似文献   

2.
The presence of carbamoyl phosphate synthetase III (CPSase III), catalyzing the first step of the urea cycle in fish, in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac larvae and adult white muscle has been established using gel filtration chromatography to separate the CPSase III from the pyrimidine-pathway related CPSase II. The results are consistent with the hypothesis that teleostean fish express urea cycle enzymes during early development and with recent observations of low levels of CPSase III in muscle tissue. The presence of CPSase III in crude extracts could not be established using sensitive assay conditions to discriminate between CPSase III and CPSase II. However, kinetic characterization after chromatographic separation identified each as typical CPSase II and CPSase III activities, respectively. The CPSase III was less sensitive to activation by N-acetyl- -glutamate and had a higher Km for ammonia than CPSase III found in other species. These results suggest that precise quantitation of low levels of CPSase III in the presence of CPSase II by assaying crude extracts may be difficult unless the enzymes are first separated and the kinetic properties of CPSase III are determined; the results indicate that assaying larval extracts of Atlantic halibut in the presence of uridine triphosphate results in CPSase activity that reflects mostly CPSase III and can, therefore, be used to measure changes in CPSase III activity.  相似文献   

3.
Urea synthesis via the hepatic ornithine urea cycle (OUC) has been well described in elasmobranchs, but it is unknown whether OUC enzymes are also present in extrahepatic tissues. Muscle and liver urea, trimethylamine oxide (TMAO), and other organic osmolytes, as well as selected OUC enzymes (carbamoyl phosphate synthetase III, ornithine transcarbamoylase, arginase, and the accessory enzyme glutamine synthetase), were measured in adult little skates (Raja erinacea) exposed to 100% or 75% seawater for 5 d. Activities of all four OUC enzymes were detected in the muscle. There were no changes in muscle OUC activities in skates exposed to 75% seawater; however, arginase activity was significantly lower in the liver, compared to controls. Urea, TMAO, and several other osmolytes were significantly lower in the muscle of little skates exposed to 75% seawater, whereas only glycerophosphorylcholine was significantly lower in the liver. Urea excretion rates were twofold higher in skates exposed to 75% seawater. Taken together, these data suggest that a functional OUC may be present in the skeletal muscle tissues of R. erinacea. As well, enhanced urea excretion rates and the downregulation of the anchor OUC enzyme, arginase, in the liver may be critical in regulating tissue urea content under dilute-seawater stress.  相似文献   

4.
We observed 10 sea lampreys (Petromyzon marinus) parasitizing basking sharks (Cetorhinus maximus), the world's second largest fish, in the Bay of Fundy. Due to the high concentrations of urea in the blood and tissues of ureosmotic elasmobranchs, we hypothesized that sea lampreys would have mechanisms to eliminate co-ingested urea while feeding on basking sharks. Post-removal urea excretion rates (J(Urea)) in two lampreys, removed from separate sharks by divers, were initially 450 ( approximately 9000 micromol N kg-1 h-1) and 75 times ( approximately 1500 micromol N kg-1 h-1) greater than basal (non-feeding) rates ( approximately 20 micromol N kg-1 h-1). In contrast, J(Urea) increased by 15-fold after parasitic lampreys were removed from non-ureosmotic rainbow trout (Oncorhynchus mykiss). Since activities of the ornithine urea cycle (OUC) enzymes, carbamoyl phosphate synthetase III (CPSase III) and ornithine carbamoyl transferase (OCT) were relatively low in liver and below detection in intestine and muscle, it is unlikely that the excreted urea arose from de novo urea synthesis. Measurements of arginase activity suggested that hydrolysis of dietary arginine made a minor contribution to J(Urea.). Post-feeding ammonia excretion rates (J(Amm)) were 15- to 25-fold greater than basal rates in lampreys removed from both basking sharks and rainbow trout, suggesting that parasitic lampreys have a high capacity to deaminate amino acids. We conclude that the sea lamprey's ability to penetrate the dermal denticle armor of sharks, to rapidly excrete large volumes of urea and a high capacity to deaminate amino acids, represent adaptations that have contributed to the evolutionary success of these phylogenetically ancient vertebrates.  相似文献   

5.
The air-breathing walking catfish Clarias batrachus is a potential ureogenic teleost with having a full complement of ornithine-urea cycle (OUC) enzymes expressed in various tissues. The present study was aimed at determining the pattern of nitrogenous waste excretion in the form of ammonia-N and urea-N along with the changes of tissue ammonia and urea levels, and the expression of OUC enzymes and glutamine synthetase (GSase) in early life stages of this teleost, and further, to study the possible induction of ureogenesis in 15-day old fry under hyper-ammonia stress. The ammonia and urea excretion was visible within 12 h post-fertilization (hpf), which increased several-fold until the yolk was completely absorbed by the embryo. Although all the early developing stages were primarily ammoniotelic, they also excreted significant amount of nitrogen (N) in the form of urea-N (about 35-40% of total N). Tissue levels of ammonia and urea also increased along with subsequent developmental stages at least until the yolk absorption stage. All the OUC enzymes and GSase were expressed within 4-12 hpf showing an increasing trend of activity for all the enzymes until 350 hpf. There was a significant increase of activity of GSase, carbamyl phosphate synthetase III (CPSase III) and argininosuccinate lyase enzymes (ASL), accompanied with significant increase of enzyme protein concentration of at least two enzymes (GSase and CPSase III) in the 15-day old fry following exposure to 10 mM NH4Cl as compared to respective controls kept in water over a period of 72 h. Thus, it appears that the OUC enzymes are expressed in early life stages of walking catfish like other teleosts, but at relatively high levels and remain expressed all through the life stages with a potential of stimulation of ureogenesis throughout the life cycle as a sort of physiological adaptation to survive and breed successfully under hyper-ammonia and various other environmental-related stresses.  相似文献   

6.
The crab-eating frog Rana cancrivora is one of only a handful of amphibians worldwide that tolerate saline waters. They typically inhabit brackish water of mangrove forests of Southeast Asia, but live happily in freshwater and can be acclimated to 75% seawater (25 ppt) or higher. We report here that after transfer of juvenile R. cancrivora from freshwater (1 ppt) to brackish water (10 -->20 or 20 -->25 ppt; 4-8 d) there was a significant increase in the specific activity of the key hepatic ornithine urea cycle enzyme (OUC), carbamoyl phosphate synthetase I (CPSase I). At 20 ppt, plasma, liver and muscle urea levels increased by 22-, 21-, and 11-fold, respectively. As well, muscle total amino acid levels were significantly elevated by 6-fold, with the largest changes occurring in glycine and beta-alanine levels. In liver, taurine levels were 5-fold higher in frogs acclimated to 20 ppt. There were no significant changes in urea or ammonia excretion rates to the environment. As well, the rate of urea influx (J(in) (urea)) and efflux (J(out) (urea)) across the ventral pelvic skin did not differ between frogs acclimated to 1 versus 20 ppt. Taken together, these findings suggest that acclimation to saline water involves the up-regulation of hepatic urea synthesis, which in turn contributes to the dramatic rise in tissue urea levels. The lack of change in urea excretion rates, despite the large increase in tissue-to-water gradients further indicates that mechanisms must be in place to prevent excessive loss of urea in saline waters, but these mechanisms do not include cutaneous urea uptake. Also, amino acid accumulation may contribute to an overall rise in the osmolarity of the muscle tissue, but relative to urea, the contribution is small.  相似文献   

7.
Teleosts appear to have retained the genes for the urea cycle enzymes. A few species express the full complement of enzymes and are ureotelic (e.g., Lake Magadi tilapia) or ammoniotelic (e.g., largemouth bass), whereas most species have low or non-detectable enzyme activities in liver tissue and excrete little urea (e.g., adult rainbow trout). It was surprising, therefore, to find the expression of four urea cycle enzymes during early life stages of rainbow trout. The urea cycle may play a role in ammonia detoxification during a critical time of development. Exposure to alkaline water (pH 9.0-9.5) or NH4Cl (0.2 mmol/l) increased urea excretion by several-fold in trout embryos, free embryos and alevin. Urea transport is either by passive simple diffusion or via carried-mediated transport proteins. Molecular studies have revealed that a specialised urea transport protein is present in kidney tissue of elasmobranchs, similar to the facilitated urea transporter found in the mammalian inner medulla of the kidney.  相似文献   

8.
The incorporation of ammonia into glutamine, catalyzed by glutamine synthetase, is thought to be important in the detoxification of ammonia in animals. During early fish development, ammonia is continuously formed as yolk proteins and amino acids are catabolized. We followed the changes in ammonia and urea-nitrogen content, ammonia and urea-nitrogen excretion, glutamine synthetase activity, and mRNA expression of four genes coding for glutamine synthetase (Onmy-GS01-GS04) over 3-80 days post fertilization and in adult liver and skeletal muscle of the rainbow trout (Oncorhynchus mykiss). Both ammonia and urea-nitrogen accumulate before hatching, although the rate of ammonia excretion is considerably higher relative to urea-nitrogen excretion. All four genes were expressed during early development, but only Onmy-GS01 and -GS02 were expressed at appreciable levels in adult liver, and expression was very low in muscle tissue. The high level of expression of Onmy-GS01 and -GS03 prior to hatching corresponded to a linear increase in glutamine synthetase activity. We propose that the induction of glutamine synthetase genes early in development and the subsequent formation of the active protein are preparatory for the increased capacity of the embryo to convert the toxic nitrogen end product, ammonia, into glutamine, which may then be utilized in the ornithine-urea cycle or other pathways.  相似文献   

9.
Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O-UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate-limiting enzyme of the O-UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O-UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O-UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.  相似文献   

10.
The role of dietary arginine in affecting nitrogen utilisation and excretion was studied in juvenile European sea bass (Dicentrarchus labrax) fed for 72 days with diets differing in protein sources (plant protein-based (PM) and fish-meal-based (FM)). Fish growth performance and nitrogen utilisation revealed that dietary Arg surplus was beneficial only in PM diets. Dietary Arg level significantly affected postprandial plasma urea concentrations. Hepatic arginase activity increased (P<0.05) in response to dietary Arg surplus in fish fed plant protein diets; conversely ornithine transcarbamylase activity was very low and inversely related to arginine intake. No hepatic carbamoyl phosphate synthetase III activity was detected. Dietary arginine levels did not affect glutamate dehydrogenase activity. A strong linear relationship was found between liver arginase activity and daily urea-N excretion. Dietary Arg excess reduced the proportion of total ammonia nitrogen excreted and increased the contribution of urea-N over the total N excretion irrespective of dietary protein source. Plasma and excretion data combined with enzyme activities suggest that dietary Arg degradation via hepatic arginase is a major pathway for ureagenesis and that ornithine-urea cycle is not completely functional in juvenile sea bass liver.  相似文献   

11.
12.
D R Deshmukh  C D Rusk 《Enzyme》1989,41(3):168-174
Young ferrets develop hyperammonemia soon after eating an arginine-free diet, whereas adult ferrets do not develop hyperammonemia after an identical treatment. Earlier reports indicate that young or adult rats do not develop hyperammonemia and encephalopathy after a single meal of an arginine-free diet. The effects of a single feeding of an arginine-free diet on the urea cycle enzyme activities in the liver of young and adult ferrets is reported. Ornithine carbamyl transferase, carbamyl phosphate synthetase and ornithine aminotransferase activities in the livers of adult ferrets were significantly higher than those in the livers of young ferrets. A single meal of an arginine-free diet did not alter the urea cycle enzyme activities in the liver of young or adult ferrets. The levels of urea cycle enzymes in the liver and kidney of young ferrets were comparable to those in rat liver and kidney. The results suggest that the hyperammonemia observed in young ferrets following a single meal of an arginine-free diet may not be due to the deficiency of enzyme activities.  相似文献   

13.
Exposure of fish to alkaline conditions inhibits the rate of ammonia excretion, leading to ammonia accumulation and toxicity. The purpose of this study was to determine the role of ureogenesis via the urea cycle, to avoid the accumulation of ammonia to a toxic level during chronic exposure to alkaline conditions, for the air-breathing walking catfish, Clarias batrachus, where a full complement of urea cycle enzyme activity has been documented. The walking catfish can survive in water with a pH up to 10. At a pH of 10 the ammonia excretion rate by the walking catfish decreased by approximately 75% within 6 h. Although there was a gradual improvement of ammonia excretion rate by the alkaline-exposed fish, the rate remained 50% lower, even after 7 days. This decrease of ammonia excretion was accompanied by a significant accumulation of ammonia in plasma and body tissues (except in the brain). Urea-N excretion for alkaline-exposed fish increased 2.5-fold within the first day, which was maintained until day 3 and was then followed by a slight decrease to maintain a 2-fold increase in the urea-N excretion rate, even after 7 days. There was also a higher accumulation of urea in plasma and other body tissues (liver, kidney, muscle and brain). The activity of glutamine synthetase and three enzymes operating in the urea cycle (carbamyl phosphate synthetase, argininosuccinate synthetase, argininosuccinate lyase) increased significantly in hepatic and extra-hepatic tissue, such as the kidney and muscle in C. batrachus, during exposure to alkaline water. A significant increase in plasma lactate concentration noticed during alkaline exposure possibly helped in the maintenance of the acid-base balance. It is apparent that the stimulation of ureogenesis via the induced urea cycle is one of the major physiological strategies adopted by the walking catfish (C. batrachus) during chronic exposure to alkaline water, to avoid the in vivo accumulation of ammonia to a toxic level in body tissues and for the maintenance of pH homeostasis.  相似文献   

14.
During intense exercise there is an augmented production of ammonia and IMP in the exercised muscle that could be related to the establishment of peripheral fatigue. In order to prevent this accumulation, the urea cycle in the liver eliminates ammonia in the form of urea and the skeletal muscle buffers the increase of ammonia via transamination reactions. In the present study we evaluated the effect of arginine, citrulline and ornithine supplementation, intermediates of the urea cycle, on the performance of sedentary and swimming-trained rats submitted to a single bout of exhaustive exercise. We also measured the glycogen content of the soleus and gastrocnemius muscles and of the liver, as well as the plasma concentrations of ammonia, urea, glutamine, glucose and lactate. The results indicate that arginine, citrulline and ornithine supplementation increased the flux of substrate through the reaction catalysed by glutamine synthetase, leading to increased glutamine production after an exhaustive bout of exercise, and of the mechanism involved in ammonia buffering.  相似文献   

15.
16.
Chronic glucocorticoid treatment results in skeletal muscle wasting. However, if the contractile activity of muscle is increased, this effect is abated. Because the gene encoding glutamine synthetase is known to be glucocorticoid inducible, it represents an appropriate model for testing whether glucocorticoids and endurance training can exert antagonistic effects on the expression of specific genes in muscle tissue. Our data confirm that administration of hydrocortisone 21-acetate to rats produces 2.4- and 5.9-fold increases in plantaris muscle glutamine synthetase enzyme activity and mRNA, respectively. Moreover, subjecting rats to a 12- to 16-wk exercise program diminishes the basal levels of these indices of glutamine synthetase expression to approximately 60% of the values observed in sedentary controls. Endurance training produces a similar effect on plantaris muscle glutamine synthetase expression in glucocorticoid-treated animals. These data demonstrate that the therapeutic effects of exercise in counteracting muscle atrophy are associated with attenuation of expression of a glucocorticoid-inducible gene in skeletal muscle.  相似文献   

17.
The fully grown but nonmetamorphosed (juvenile) axolotl Ambystoma mexicanum was ureogenic and primarily ureotelic in water. A complete ornithine-urea cycle (OUC) was present in the liver. Aerial exposure impeded urea (but not ammonia) excretion, leading to a decrease in the percentage of nitrogen excreted as urea in the first 24 h. However, urea and not ammonia accumulated in the muscle, liver, and plasma during aerial exposure. By 48 h, the rate of urea excretion recovered fully, probably due to the greater urea concentration gradient in the kidney. It is generally accepted that an increase in carbamoyl phosphate synthetase activity is especially critical in the developmental transition from ammonotelism to ureotelism in the amphibian. Results from this study indicate that such a transition in A. mexicanum would have occurred before migration to land. Aerial exposure for 72 h exhibited no significant effect on carbamoyl phosphate synthetase-I activity or that of other OUC enzymes (with the exception of ornithine transcarbamoylase) from the liver of the juvenile A. mexicanum. This supports our hypothesis that the capacities of OUC enzymes present in the liver of the aquatic juvenile axolotl were adequate to prepare it for its invasion of the terrestrial environment. The high OUC capacity was further supported by the capability of the juvenile A. mexicanum to survive in 10 mM NH(4)Cl without accumulating amino acids in its body. The majority of the accumulating endogenous and exogenous ammonia was detoxified to urea, which led to a greater than twofold increase in urea levels in the muscle, liver, and plasma and a significant increase in urea excretion by hour 96. Hence, it can be concluded that the juvenile axolotl acquired ureotelism while submerged in water, and its hepatic capacity of urea synthesis was more than adequate to handle the toxicity of endogenous ammonia during migration to land.  相似文献   

18.
Mitochondrial respiration and activities of key metabolic enzymes from liver and white skeletal muscle were compared between control aquatic slender lungfish Protopterus dolloi , and those exposed to air for 5 months. Activities of citrate synthase, glycogen phosphorylase, phosphofructokinase and pyruvate kinase in liver were not affected by air-exposure. In muscle, air-exposure reduced citrate synthase and pyruvate kinase activities (relative to tissue wet mass) by 63 and 50%, respectively. Liver carnitine palmitoyl transferase activity (relative to mitochondrial protein) decreased by half following air-exposure, but there was no change in muscle. In mitochondria isolated from muscle, state 3 and state 4 respiration were reduced by 74 and 89%, respectively following air-exposure, but liver mitochondria were not affected. In liver, air-exposure increased activities of ornithine-urea cycle enzymes including glutamine synthase, carbamoyl-phosphate synthase III and arginase, by 1·9- to 4·2-fold. Carbamoyl-phosphate synthase III activity could not be detected in muscle, indicating that urea is not synthesized in this tissue. These data suggest that skeletal muscle metabolism is downregulated in air-exposure, conserving energy and protein during a period when the animals cannot forage. In contrast, ATP production capacities in the liver are maintained, and this may permit expensive urea biosynthesis to continue during aerial exposure.  相似文献   

19.
The sequence of carbamoyl phosphate synthetase I (CPSase I) cDNA and expression of the enzyme in liver of the toad Xenopus laevis are reported. CPSase I mRNA increases 6-fold when toads are exposed to high salinity for extended periods of time. The deduced 1,494-amino acid sequence of the CPSase I is homologous to other CPSases and reveals a domain structure and conserved amino acids common to other CPSases. A serine residue (S287) is present where there is a cysteine residue required for glutamine-dependent activity in CPSase Types III and II (Type I CPSases utilize only ammonia as nitrogen-donating substrate). A sequence of DNA 964 bases upstream from the ATG start codon for the CPSase I gene is also reported. Phylogenetic analysis for 30 CPSase isoforms, including X. laevis CPSase I, across a wide spectrum of phyla is reported and discussed. The results are consistent with the views that eukaryotic CPSase II as a multifunctional complex evolved from prokaryotic CPSase II and that CPSase I in terrestrial vertebrates and CPSase III in fishes arose from eukaryotic CPSase II by independent events after the divergence of plants in eukaryotic evolution.  相似文献   

20.
In order to obtain more information about the physiological role(s) of flavin-containing monooxygenases (FMOs) in euryhaline teleost fishes, two experimental series were performed using adult and juvenile rainbow trout (Oncorhynchus mykiss). Cannulated adult trout were exposed to freshwater or 21% seawater for 48 h, whereas juvenile trout were acclimated to one of four different salinities: freshwater, 7%, 14%, or 21% during a 2-week period. FMO expression and activity were determined in red blood cells (RBC), liver, gill, kidney, gut, heart and brain. Furthermore, the content of trimethylamine oxide (TMAO; an FMO metabolite and an osmolyte) as well as urea were determined in various tissues. FMO expression and activity increased significantly and in a salinity dependent manner in osmoregulatory organs (gills, kidney and gut) in both juveniles and adult trout and, furthermore, in RBC in adults. No significant changes were observed in liver or heart. Urea content increased significantly and in a salinity dependent manner in all tissues, whereas TMAO was accumulated primarily in muscle tissue. Salinity dependent adjustment of FMO expression and activity primarily in osmoregulatory organs as well as regulation of TMAO content in muscle is consistent with previous studies showing an association of FMO with osmoregulation in euryhaline teleosts. However, the lack of a parallel increase of TMAO with urea in other tissues of fish at high salinity indicates other mechanisms of protection from intracellular urea may exist in non-muscular tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号