首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity of airborne pollen grains in El-Hadjar town (northeast Algeria) was measured for 1 year, from July 1, 2012 to June 30, 2013, by means of the gravimetric method using Durham apparatus. The total number of pollen grains/cm2 was calculated from slides that were changed daily. This aerobiological study documented the air concentration of pollen from 50 taxa, where 28 belonged to arboreal and 22 to non-arboreal taxa. The percentage of pollen from arboreal and non-arboreal taxa was 56 and 44 %, respectively. From the list, the major collected taxa causing allergy in humans dominant in the Mediterranean area were Cupressaceae (14.86 %), Olea sp. (7.18 %), Casuarina sp. (6.44 %), and Fraxinus sp. (3.83 %) among arboreal plants, whereas for the non-arboreal plants Poaceae (23.20 %), Mercurialis sp. (12.58 %), Plantago sp. (1.69 %), Urticaceae (0.95 %), and Chenopodiaceae (0.85 %). The highest pollen counts occurred in the period from February to April. The pollen calendar for the region presented in this paper may be a useful tool for allergologists and botanical awareness.  相似文献   

2.
Narrow-leafed ash (Fraxinus angustifolia) is a common polygamous tree growing on the banks of rivers in the western Mediterranean region. Pollination occurs during winter, and the tree’s pollen is among the most abundant during that season. This work aims to relate the phenology of pollen shedding, source tree distribution, meteorology and airborne pollen occurrence for the species. Aerobiological sampling was conducted in Badajoz (south-western Spain) using a Hirst volumetric sampler over 24 years (1993–2016). Trees were geo-localized in a circle 500 m in diameter surrounding the pollen sampler. During the last two periods, pollination phenology was studied in 10 specimens, five in the surroundings of the pollen station and five 3 km apart, at a frequency of 3–4 days on average. Moreover, a detailed analysis of pollen occurrence was conducted for these two periods. Daily data for the whole period and hourly data over the last 2 years were used, including pollen monitoring and meteorology. A comparison was made between pollen occurrence and source distribution. The main pollen season lasted on average 53 (28–75) days. Average values were less than 10 grains m?3, except for two periods of 23–24 grains m?3. Daily data and hourly data correlation with meteorology showed different signs in correlation analysis. Hourly analysis showed that the maximum concentration occurred just after noon. Most pollen was recorded at an average temperature of 9 °C. Analysis of pollen sources and pollen occurrence showed a close relationship between predominant wind directions and tree distribution. Peaks of phenology were not coincident with pollen peaks. No trends in pollination were found. Non-homogeneous distribution of pollen sources for Fraxinus angustifolia provided a suitable tool to demonstrate that wind direction plays a relevant role when aerobiological data are interpreted according to source distribution. A limitation in phenology analysis and aerobiological data was noted in the narrow-leafed ash species.  相似文献   

3.
An aeropalynological study during the years 2014–2015 was performed in Hatay, which is a unique sociocultural and phytogeographical area located on the border of Turkey and Syria on the eastern coast of the Mediterranean. The sampling was performed by a Hirst-type volumetric sampler (Lanzoni VPPS 2000), and pollen grains of 54 taxa were identified, of which 83.21% of the annual sum belonged to woody taxa. The highest pollen concentration was recorded in February, of which a large amount came from the Cupressaceae/Taxaceae families. The diversity of the pollen reflected the vegetation of the area and plantations of the city center, but pollen grains from Euro-Siberian elements specific to Mount Amanos could not be recorded. Pollen types found at more than 3% of the annual pollen index and considered dominant pollen types were as follows: Cupressaceae/Taxaceae (50.86%), Olea europaea (12.67%), Moraceae (7.20%), Poaceae (5.99%), Quercus (5.35%), Urticaceae (3.79%) and Pinus (3.70%); almost all dominant pollen types in the city atmosphere were previously stated to be allergic. The main pollen season starting dates of common pollen types found were one or two weeks earlier than those of the surroundings. Many statistically significant correlations were found between daily pollen concentrations and daily meteorological parameters, e.g., Cupressaceae/Taxaceae Poaceae and Urticaceae pollen correlated negatively with mean temperature in both years, and in the hindermost two families daily pollen amounts significantly correlated with wind speed in the second year. Daily Olea europaea pollen concentration showed a significant negative correlation with the amount of total daily rainfall in the second year.  相似文献   

4.
H. Ribeiro  I. Abreu 《Aerobiologia》2014,30(3):333-344
Airborne pollen calendars are useful to estimate the flowering season of the different plants as well as to indicate the allergenic potential present in the atmosphere at a given time. In this study, it is presented a 10-year survey of the atmospheric concentration of allergenic pollen types. Airborne pollen was performed, from 2003 to 2012, using a 7-day Hirst-type volumetric trap. The interannual variation of the daily mean concentration of the number of pollen grains and the main pollen season was determined as well as the hourly variations and correlation with meteorological parameters. During the study period, 18 different allergenic pollen types were considered based on its representativeness on the total annual airborne pollen concentration. The lowest annual concentrations were sampled in 2006 and the highest in 2007. The highest airborne pollen concentration was found during early spring and early summer. On the contrary, December was the month with the lowest pollen concentration. The major pollen sampled belongs to trees followed by weeds and grasses, being the most representative pollen types in the atmosphere: Urticaceae, Platanus, Poaceae, Pinaceae, Cupressaceae, Acer, Quercus, Castanea, Plantago, Alnus, Olea europaea, Betula, Myrtaceae and Populus. Intradiurnal distribution patterns of the pollen types studied presented differences with some taxa being predominantly sampled in the morning (9–11 a.m.) while others in first night hours (between 9 and 12 p.m.). Significantly correlations were found between the airborne pollen concentration and meteorological parameters.  相似文献   

5.
Quercus pollen is one of the most abundant pollen types in the atmosphere of central Iberian Peninsula (Spain), as a consequence of the extensive representation of well-preserved forests and shrub communities dominated by species of the genus Quercus in this area. This paper analysed key features of the Quercus pollination season in the central Iberian Peninsula and the influence of weather-related variables on airborne Quercus pollen concentration through statistical techniques of correlation analysis and the use of a decision tree model for predicting pollen concentrations. Quercus species are very common in Spain and Portugal, dominating a number of ecosystems including Mediterranean forests. This gives rise to very high airborne Quercus pollen concentrations, particularly in spring. Sampling was carried out over a 6-year period using a Hirst volumetric sampler, and the sampling procedure established by the Spanish Aerobiology Network. Results show that between 92 and 98.5 % of total annual airborne Quercus pollen was recorded in the April–June period. Annual pollen index were high in all study years, averaging 12,344 grains, but it should be highlighted that pollen production was highly variable between years. Correlations between mean daily Quercus pollen concentration and weather-related variables showed that in the pre-peak period, a significant positive correlation was observed with the mean daily temperature and the hours of sunshine and a negative correlation was observed with the humidity and the rainfall. In the post-peak period, a significant negative correlation was found with the mean daily temperature and the hours of sunshine. The predictions obtained in the decision tree model showed a moderate significant correlation (r = 0.42) with the daily Quercus pollen concentration predicted and the one observed. Temperature is the most influential variable in the release of Quercus pollen.  相似文献   

6.
The concentration of pollen grains in the air was studied using two aerobiological volumetric Hirst-type spore traps, one at ground level and the other at a height of 16 m on a terrace. The study was carried out between 2009 and 2011, from March to June in Badajoz (SW Spain). Intradiurnal and daily pollen counts were compared with both, different meteorological parameters and the distribution of local pollen sources. Forty-six pollen types were identified and 89 % of the total grains corresponded to Quercus, Poaceae, Olea, Pinaceae and Plantago pollen types, in descending order. The mean height ratio of the daily pollen count was 1.02. Significant correlations were observed when comparing daily pollen counts for predominant pollen types at both levels. The comparisons have shown significant differences in the daily pollen count between the two samplers in the case of Olea and Pinaceae, but not for Quercus, Poaceae and Plantago. Similar results were obtained using the intradiurnal airborne pollen database. No significant correlation has been found between pollen count and the different meteorological parameters, showing no dependence on height. These differences of Olea and Pinaceae may be explained in part by the uneven distribution of the pollen sources and the disturbance by nearby buildings. The temporal variation patterns between the two sites were similar; however, taking into account the average of the data, the higher values were obtained first at the ground level and later at 16 m.  相似文献   

7.
Summary Epidemiological and aerobiological observations (1987;1989) have been carried out for three years in order to search the existing relationship between the Gramineae's daily pollen concentration in Palermo's atmosphere and the number of hay fever cases due to such pollen.The aerobiological data were obtained with a 2000 VPPS volumetric sampler. Clinical research was performed on 555 hay fever patients treated in our ambulatory over a three-year period (1987–1989).These data, elaborated by a seven day running mean method and correlated with epidemiological data, evidenced that three of the pollen families in our territory are clinically important: Urticaceae,Parietaria prevailing among them, Gramineae and Oleaceae,Olea europaea prevailing among them.The Gramineae are the second most important allergenic pollen (32,08% of all the pollinosis) whereas, as far as its concentration in the atmosphere is concerned; it ranks third followingParietaria and Oleaceae.  相似文献   

8.
Pollen-related allergic diseases are a growing health problem. Thus, information on prevalence of airborne pollen may serve as guide for clinicians to accurately manage allergic diseases. In this study, an aeropalynological survey was conducted from November 2013 to October 2014 in Manila, Philippines, to determine the seasonal distribution of the most prevalent airborne pollen and correlate the influence of meteorological factors on their daily concentrations. A volumetric pollen trap was placed on a rooftop, 21 m above ground level. A total of 5677 pollen grains from 18 pollen types were identified, of which Urticaceae, Cannabaceae, Poaceae and Moraceae were the most prevalent. Other pollen types observed that represented 1 % of the total pollen concentration, in descending order, were Terminalia catappa, Myrtaceae, Muntingia calabura, Verbenaceae, Amaranthaceae, Cyperaceae, Caricaceae and Mimosa sp. Of the total airborne pollen, 87 % were obtained during the dry season (November–May). Pollen concentrations peaked (55 %) during the summer months (March–May), indicating a positive correlation (p < 0.01) between pollen concentration and temperature (maximum and mean). Alternatively, only 13 % of the pollen concentrations were obtained during the wet season (June–October). It was observed that pollen concentrations were negatively correlated (p < 0.01) with rainfall and humidity. As the pollen collection was done for one sampling year, only an approximation of the daily concentration of the pollen types was identified and correlated with meteorological factors. Further data collection is required to generate an accurate pollen calendar for use in allergy studies.  相似文献   

9.
A significant increase in summer temperatures has been observed for the period 1996–2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species (Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann–Kendall test and Sen’s slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman’s rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July–September daily minimum temperatures (r?=??0.644, p?Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.  相似文献   

10.
Members of Cupressaceae and Taxaceae are known to release large amounts of highly allergenic pollen grains into the atmosphere, which are responsible for the onset of pollinosis in many countries throughout the world. In addition to pollen grains, their pollen sacs produce orbicules, which are submicron particles reported to carry allergens and which are potentially able to reach much further down the respiratory tract than pollen grains. Previous research has postulated the presence of orbicules in the atmosphere; however, direct observations have not yet been reported. The aim of this research was to provide the first direct evidence that Cupressaceae orbicules are released into the atmosphere by detecting them in daily aerobiological samples. We observed pollen sacs, pollen grains, and orbicules of nine species of Cupressaceae using scanning electron microscope (SEM). We then used a light and confocal microscope, to examine daily aerobiological samples. Under SEM, we measured the orbicule size (0.494–0.777 µm) and detected unknown nanometric particles (130–200 nm). Under the light microscope, aerobiological samples showed clusters of stained dots surrounding the pollen grains of Cupressaceae. Under the confocal microscope, the same clusters were resolved into submicron particles with the same autofluorescence as the pollen grains. These features enabled us to identify them as orbicules. We believe that our findings help to explain the onset of pollinosis and allergic asthma related to Cupressaceae pollen grains in many countries, even before pollen grains are actually detected or after they are no longer observed in aerobiological monitoring samples.  相似文献   

11.
An aerobiological study has been carried out in the region of Caxias do Sul in southern Brazil. Pollen monitoring was performed from January 1, 2001 through to December 31, 2002. A total of 30,469 pollen grains were collected during this period, and 40 pollen types were identified; of these, 23,389 pollen grains, representing 29 pollen types, originated from tree and shrub taxa. The maximum pollen concentration was registered in August 2001 and October 2002. In the study area, the pollen type Mimosa scabrella (18.8%) was much more abundant than all of the pollen types from tree and shrub taxa, such as: Urticaceae (18.4%), Myrtaceae (10.2%), Cupressaceae (7.7%), Myrsine (4.8%), Sorocea (3.9%), Pinaceae (2.9%), Asteraceae (2.2%) and Ricinus (2.1%). These nine pollen types accounted for the largest pollen concentrations of all the tree and shrub taxa. The pollen types Carya, Melastomataceae, Mimosa scabrella, Myrsine and Sorocea are reported for the first time in an aerobiological study in Brazil.  相似文献   

12.
The influence of meteorological factors on daily Urticaceae pollen counts were studied in Córdoba (southwest Spain) in 1996 and 1997. The daily Urticaceae pollen concentrations were obtained by using a Hirst-type volumetric sampler, and meteorological data were obtained from the Córdoba airport, located near the sampling site. The highest correlation between pollen concentration and meteorological parameters was obtained during non-rainy seasons. Temperature was found to be the most important meteorological parameter influencing pollen counts in spring, as temperature is the main reason for the increase of pollen concentration in the atmosphere. In autumn, humidity was another important parameter influencing pollen counts. Rain, however, did not appear to be significant. The influence of the pollen concentration of the 2 previous days and the pollen concentration of the previous day has been studied. During periods with low precipitation, the pollen concentration of the previous day was a useful predictor of Urticaceae pollen concentrations for the following day. Received: 4 January 1999 / Revised: 26 July 1999 / Accepted: 6 September 1999  相似文献   

13.
We studied airborne pollen along an elevation gradient of Mt Olympos (Greece). Samples were collected on a regular basis, over the period March–October 2009, in eight elevation-different stations, by use of a portable Hirst-type volumetric sampler. Concurrently, we studied pollen production in Quercus coccifera, Q. ilex, Pinus heldreichii and P. nigra, which are dominant species in the main vegetation types of the mountain. Of the 35 pollen taxa detected in the air, 18 account for 99.1 % of the total airborne pollen. These are the main pollen taxa each contributing by at least 0.5 %. Pinaceae (32 %) followed by Quercus (24 %) and Urticaceae (18 %) are the most abundantly represented taxa. Duration of the pollen season decreases with elevation by on average 3 days for every 100 m of elevation increase or by 5 days for every Celsius-degree of temperature decrease. Pollen concentration in the air decreases with elevation for the lowland taxa; with the exception of Cupressaceae, no pattern is observed for the other main taxa. The pine and oak species studied carry comparable amounts of pollen, approximately 104 grains per flower, 108–109 per m2 of crown surface and 1010–1011 per individual; pollen production, primarily of the two Quercus species, is not responsive to environmental changes associated with elevation. Results provide evidence that, within a margin of error, airborne pollen reflects the distributions of pollen taxa on the mountain; regarding abundance, airborne pollen is representative of Quercus, but under-representative of Pinaceae. Ambrosia pollen is found at all elevations examined, although plants producing it have not been recorded on or around Mt Olympos.  相似文献   

14.
The aerobiological behaviour of Urticaceae in Trieste and the correlations with the meteorological parameters were examined. Airborne pollen was collected from 1990 to 1999 using a Hirst type spore trap (Burkard) and the data interpretation was performed according to the standard method adopted by the Italian Aeroallergen Network. The main pollen season of Urticaceae in Trieste goes from mid-April to mid-September. The highest values occur in May and June. Although different seasonal patterns are found every year, the main peak occurs on average at the beginning of May, followed by other decreasing peaks until September. Thecumulative counts vary greatly over the years, with a mean value of 18.315 p/m3. The maximum annual total pollen grains was registered in 1996 and the minimum in 1991. Spearman's correlation was used to establish the relationship between the daily pollen counts and the daily meteorological data both considering their original quantitative values and transformed values according to their day by day changes. Daily pollen concentrations present usually positive correlation with temperature, negative with rainfall and wind speed and no correlation with humidity. Better results were obtained with transformed values.  相似文献   

15.
The composition and seasonal distribution of airborne pollen grains in the atmosphere of Bahía Blanca, Argentina, has been studied between June 2001 and December 2003 using the Rotorod sampler (model 40). The results show that the main pollen types during this period were Cupressaceae, Fraxinus, Myrtaceae, Poaceae, Amaranthus/Chenopodiaceae, Pinus, Urticaceae, Ulmus, Olea and Styphnolobium. The highest concentrations occurred from August to December (end of winter and spring), accounting for 80% of the total annual pollen count. The greatest diversity was found in the spring, with the major of pollen coming from short-flowering plant types, such as Populus, Acer, Platanus, Juglans, Tamarix, Ailanthus and Typha. The potential sources of pollen from woody ornamental species are Cupressus sempervirens, Eucalyptus camaldulensis and Fraxinus pennsylvanica. whereas those from herbaceous species are the Chenopodiaceae and Poaceae, which are found within the city and also in the surrounding natural vegetation, and the Urticaceae, which are only present in the city. Marked annual differences were noted during the study period. The increase in 2002 may have been due to the abundant rainfall that occurred prior to the spring season, which would have favored the vegetative stage and flower development of plants. The decrease in pollen concentration in 2003 was mainly due to low rainfall throughout the year.  相似文献   

16.
The aim of this study was to assess the current aerobiological situation and to investigate the influence of the hot and dry summer 2003 on pollen season (onset, end and duration of the pollen season, peak pollen day and value, total seasonal amount of pollen grains) of herbaceous family as Poaceae, Urticaceae and Compositeae. Heat wave of 2003 influenced the phenology of the main pollen families in Tuscany: the high temperatures occurred during 2003 affected pollen season of different family with different responses. This study confirms the role that the climate has on the flora species and in particular on herbaceous species phenology and the high variability of the pollination among different places, during extreme events. In general, high spring temperature induces an advance of the flowering period and a release of higher pollen quantity of Urticaceae and Poaceae; however, exceptional weather conditions (i.e., summer 2003) could exert an opposite effect, resulting in an impairment of flowering of Urticaceae during autumn. Compositeae species produced a low amount of pollen in 2003, even if the peak value was higher than the average in some stations.  相似文献   

17.
With a view to obtaining fuller information on airborne pollen content in the city of Havana, pollen sampling was carried out using a volumetric capture method, for the first time in Cuba. The study was conducted during 2 years (2011 and 2015). An annual pollen integral of 3414 grains was registered during the first year of study, whereas 5120 grains were observed along the 2015. Monthly maximum concentrations were recorded during April, June and July with total values close to 800 pollen grains. Of the 45 pollen types identified, Cecropia (38% of the total pollen identified in both years), Poaceae (18%), Urera type (9%) and Casuarina (6%) were particularly abundant. Although the main pollen types differed in terms of intradiurnal distribution, the highest concentrations were in all cases recorded between 0900 and 1300 hours. Maximum temperature was the variable most influencing airborne pollen counts in the air, with the exception of Casuarina. This paper sought to establish a methodological basis for the further development of aerobiological research in Cuba, thus helping to enhance the prevention and diagnosis of pollen allergies in the affected island population.  相似文献   

18.
This study has been focused on airborne pollen concentration in Northern Tunis. Pollen has been detected by a volumetric Hirst-type spore trap. This suction sampler was placed for two hydrologic years in the area of Mornag, northeastof Tunisia (36°40N; 10°17E). Fifty-two taxa were identified with heterogeneous daily pollen concentrations and a dominance of anemophilous plants. The main pollen types detected in the atmosphere were Olea europaea (38.7 and 20.75%), Cupressus (33.57 and 55.4%), Urticaceae (9.22 and 12.24%), Poaceae (3.55 and 3.32%), Mercurialis annua (2.96 and 1.6%) and Amaranthaceae (2.49 and 1.55%). The monthly pollen spectrum indicated a seasonal periodicity of airborne pollen with the main pollen season during spring. Two pollen seasons have been observed during these hydrologic years, due to both Cupressus and Amaranthaceae airborne pollen is represented during winter or spring, and also during autumn and late summer, respectively. Other pollen types represent a long pollen season, i.e., Urticaceae, starting in autumn and following until late spring. Daily pollen concentration showed a different behavior during the flowering season between both years, observing differences related to pollen index. Correlation between daily pollen concentrations of the dominant taxa showed a positive and significant correlation between airborne pollen concentrations of spring-pollinated taxa and mean temperature, but negative with maximum temperature, humidity and rainfall. In the case of minimum temperature, a different response, positive for trees and negative for herbaceous plants, has been observed.  相似文献   

19.
The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznań, Poland, based on a 16-year aerobiological data series (1996–2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznań city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznań varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (?0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity.  相似文献   

20.
The data presented constitute the longest historical series of results obtained in Seville with a Hirst-type sampler, and are a further contribution to earlier aerobiological studies carried out in the city with a Cour trap. This work supplies an updated pollen calendar of the city, together with pollen counts and other aerobiological parameters for the 14 most important types in the 4-year period of sampling. These werePlatanus hispanica, Olea europaea, Quercus, Cupressaceae, Poaceae, Urticaceae, Moraceae, Chenopodiaceae/ Amaranthaceae,Plantago, Pinaceae,Rumex, Myrtaceae, Compositae, andCasuarina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号