首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
Effect of paclobutrazol (PBZ) treatment on salinity tolerance of wheat (Triticum aestivum) was investigated on a salt-tolerant (Karchia-65) and salt-sensitive (Ghods) cultivars. Salinity significantly reduced the investigated growth parameters such as plant height, length and area of sixth leaf, root length, fresh and dry weight of shoot, roots and sixth leaf, water content (WC) of plant and seeds weight in the both cultivars. The negative effect of salinity in Ghods cultivar was more than Karchia cultivar. However, PBZ treatment reduced the growth in both cultivars, the differences in plant growth among various levels of NaCl decreased in PBZ-treated plants. Salt stress resulted in high accumulation of Na+ in the sixth leaf and roots in both cultivars, particularly in Ghods cultivar. Against Karchia cultivar, salt stress decreased the storage of K+, P and N in sixth leaf and roots in Ghods cultivar. In the both cultivars, PBZ treatment enhanced the K+, P and N contents in sixth leaf and roots by increasing salinity. Although PBZ treatment decreased the growth of plants, it improved the weight of seeds against stress damage. PBZ treatment reduced the accumulation of harmful Na+ ion in plant tissues while increased the K+, P and N contents. These observations suggest that PBZ treatment may increase tolerance by diminishing ionic imbalance caused by salt stress.  相似文献   

2.
Under salinity stress, plants commonly accumulate carbohydrates for osmotic adjustment to balance the excess accumulated ions and to protect biomolecules. We selected two cowpea cultivars with contrasting response to salinity, Pitiúba (salt-tolerant) and TVu (salt-sensitive), to investigate whether the salt tolerance could be associated with changes in carbohydrate accumulation and metabolism in leaves and roots during a long-term experiment. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Despite some changes in carbohydrate accumulation and carbohydrate metabolism enzymes induced by salt stress, no consistent alterations in carbohydrates could be found in leaves or roots in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in cowpea.  相似文献   

3.
The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.  相似文献   

4.
We investigated the effects of silicon (Si) on time-dependent changes in root tonoplast H+-ATPase and H+-PPase activities, membrane fatty acid compositions and tonoplast fluidity in two barley (Hordeum vulgare L.) cultivars differing in salt tolerance. Plants were grown in NaCl-free (control) and NaCl-supplied (60 and 120 mM, respectively) nutrient solutions with or without 1.0 mM Si. Plant roots were harvested to isolate tonoplast vesicles for assay of H+-ATPase and H+-PPase activities at days 2, 4, and 6 after treatment in the first experiment and for analysis of membrane fatty acid composition and fluidity at day 4 after treatment in the second experiment. The results showed that tonoplast H+-ATPase and H+-PPase activities in roots of salt-treated plants increased at day 2, which was more obvious at 60 mM NaCl in the salt-tolerant cultivar than in the salt-sensitive cultivar, and then decreased at day 4 and onward. These enzyme activities decreased consistently from days 2 to 6 for treatment with 120 mM NaCl. However, inclusion of 1.0 mM Si significantly enhanced both H+-ATPase and H+-PPase activities in roots of salt stressed barley, which was irrespective of NaCl level or cultivar used. The ratio of unsaturated to saturated fatty acids (U/S) increased under salt stress for both cultivars. Addition of Si to salt treatment increased the ratio of U/S in salt-tolerant cultivar but it did not in salt-sensitive cultivar compared to non-Si-amended salt treatment. Salt treatment decreased tonoplast fluidity of roots of barley significantly compared with control treatment. However, root tonoplast fluidity was significantly lower in the Si-amended salt treatment than in the non-Si-amended salt treatment. These results were in line with the previous findings that Si could help increase antioxidative defense and reduce membrane lipid oxidative damage in barley under salt stress. The possible mechanisms involved in Si-enhanced salt tolerance were discussed with respect to cell membrane integrity, stability and function in barley.  相似文献   

5.
The changes in the activity of antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POX: EC 1.11.1.7), ascorbate peroxidase (APOX: EC 1.11.1.11) and glutathione reductase (GR: EC 1.6.4.2), free proline content, and the rate of lipid peroxidation level in terms of malondialdehyde (MDA) in roots of two rice cultivars (cvs.) differing in salt tolerance were investigated. Plants were subjected to three salt treatments, 0, 60, and 120 mol m−3 NaCl for 7 days. The results showed that activated oxygen species may play a role in cellular toxicity of NaCl and indicated differences in activation of antioxidant defense systems between the two cvs. The roots of both cultivars showed a decrease in GR activity with increase in salinity. CAT and APOX activities increased with increasing salt stress in roots of salt-tolerant cultivar Pokkali but decreased and showed no change, respectively, in roots of IR-28 cultivar. POX activity decreased with increasing NaCl concentrations in salt-tolerant Pokkali but increased in IR-28. SOD activity showed no change in roots of both cultivars under increasing salinity. MDA level in the roots increased under salt stress in sensitive IR-28 but showed no change in Pokkali. IR-28 produced higher amount of proline under salt stress than in Pokkali. Increasing NaCl concentration caused a reduction in root fresh weight of Pokkali and root dry weight of IR-28. The results indicate that improved tolerance to salt stress in root tissues of rice plants may be accomplished by increased capacity of antioxidative system.  相似文献   

6.
Intra-specific variations in nonstructural carbohydrates and free proline were determined in leaves, apices, roots, and maturing seeds of two salt-tolerant cultivars (CR and Kharchia-65) and one salt-sensitive cv. Ghods of spring wheat (Triticum aestivum L.) grown in sand culture at various levels of salinity (0, 100, 200, and 300 mM NaCl and CaCl2 at 5 : 1 molar ratio) under controlled environmental conditions. The levels of leaf, apex, and root ethanol-soluble carbohydrates, fructans, starch, and proline increased in line with elevating level of salinity in all three cultivars under investigation. The contents of proline, soluble and insoluble carbohydrates in the apex increased to levels exceeding those in the leaves and roots. Soluble carbohydrate content of salt-sensitive cv. Ghods was higher in the leaves, apices, and roots and lower in the maturing seeds than in the other cultivars at all levels of salinity except at 300 mM. The results show considerable variation in the amount of soluble, insoluble sugars, and proline among plant tissues and wheat genotypes in response to salinity. Higher soluble carbohydrates and fructan in leaves, roots and maturing seeds of stressed plants indicate that their accumulation may help plant to tolerate salinity. Salt-sensitive cv. Ghods accumulated less soluble sugars in the maturing seeds and higher soluble sugars in the apices, which might be used as an indicator in screening wheat genotypes for salinity tolerance.  相似文献   

7.
The differential responses of the wheat cultivars Shi4185 and Yumai47 to salinity were studied. The higher sensitivity of Yumai47 to salinity was linked to a greater growth reduction under salt stress, compared to more salt-tolerant Shi4185. Salinity increased the Na+, proline and superoxide anion radical (O2 ?) contents in both cultivars. Leaf Na+ content increased less in the more salt-tolerant cultivar Shi4185 than salt-sensitive Yumai47. The proline content increased more significantly in Shi4185 than Yumai47; on the contrary, superoxide anion radical content increased less in Shi4185 than Yumai47. This data indicated that wheat salinity tolerance can be increased by controlling Na+ transport from the root to shoot, associated with higher osmotic adjustment capability and antioxidant activity. Although salinity increased aldehyde oxidase (AO) activity and abscisic acid (ABA) content in the leaves and roots of both cultivars following the addition of NaCl to the growth medium, AO and ABA increased more in the salt-sensitive cultivar Yumai47 than the more salt-tolerant cultivar Shi4185. Xanthine dehydrogenase (XDH) activity in the leaves of both cultivars increased with increasing concentrations of NaCl; however, leaf XDH activity increased more significantly in Yumai47 than Shi4185. Root XDH activity in Shi4185 decreased with increasing NaCl concentrations, whereas salinity induced an increased root XDH activity in Yumai47. The involvement of AO and XDH enzymatic activities and altered ABA content in the response mechanisms of wheat to salinity are discussed herein.  相似文献   

8.
Salt Tolerance in Aquatic Macrophytes: Ionic Relation and Interaction   总被引:1,自引:0,他引:1  
Effects of seawater salinity (SWS) and pure NaCl on the intracellular contents of Na+, K+, Mg2+, Ca2+, chlorophylls (Chl) and carotenoids (Car) were studied in three submerged aquatic macrophytes, Hydrilla verticillata, Najas indica and Najas gramenia, which differed in their tolerance to salinity. NaCl resulted in significant increase in Chl/Car ratio in the salt-sensitive H. verticillata and moderately salt-tolerant N. indica, but not in the salt-tolerant N. gramenia. SWS treatment did not result in any significant change in the ratio. The intracellular content of Na+ increased significantly in all the test plants upon exposure to both NaCl and SWS. The content of K+ decreased significantly in these plants upon salinity treatment, except in N. gramenia. The contents of Ca2+ and Mg2+ decreased significantly upon NaCl treatment and remained unchanged or increased upon SWS treatment. No relationship between salt tolerance and K+/Na+ ratio was observed. The maintenance of a minimal level of K+ was observed to be the most probable requirement of salt tolerance in aquatic macrophytes.  相似文献   

9.
Rice (Oryza sativa) is sensitive to salt stresses and cannot survive under low salt conditions, such as 50 mM NaCl. In an attempt to improve salt tolerance of rice, we introduced katE, a catalase gene of Escherichia coli, into japonica rice cultivar, Nipponbare. The resultant transgenic rice plants constitutively expressing katE were able to grow for more than 14 days in the presence of 250 mM NaCl, and were able to form flower and produce seeds in the presence of 100 mM NaCl. Catalase activity in the transgenic rice plants was 1.5- to 2.5-fold higher than non-transgenic rice plants. Our results clearly indicate that simple genetic modification of rice to express E. coli-derived catalase can efficiently increase its tolerance against salt stresses. The transformant presented here is one of the most salt-tolerant rice plants created by molecular breeding so far.  相似文献   

10.
11.
The effects of salt stress (50, 100, and 150 mM NaCl) on the levels of free, bound, and total polyamines were studied in the leaf tissues of salt-tolerant (Coban) and salt-sensitive (Sanbro) cultivars of sunflower (Helianthus annuus L.) plants grown for 15 or 25 days under salinity. The amounts of free, acid-soluble bound, and total spermine increased in leaf tissues of sunflower plants subjected to salt stress while the levels of other polyamines decreased or no significant changes occurred. The increase in some PA titers suggests their potential role in overcoming the adverse effect of salinity stress. The salt sensitivity of the sunflower plants was associated with the excessive accumulation of total polyamines in the leaf tissues of salt-sensitive cultivar (Sanbro) under saline condition. The content of other compounds such as proline, protein, and ions (Na+, K+, Cl-, K+/Na+) in leaf tissue changed depending on salt concentration and the cultivars used.From Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 36–42.Original English Text Copyright © 2005 by Mutlu, Bozcuk.This article was presented by the authors in English.  相似文献   

12.
Salinity and drought stress, which combines a lack of water and sodium toxicity, are more of the problems faced by plants and agricultural crops in newly reclaimed lands. Therefore, the direction of our research is to produce salinity-tolerant plants to increase the productivity of crops under conditions of salt stress. Potato callus was studied using different concentrations of NaCl (0.0, 50, 75, 100, 125, 150 and 200 mM). Shoot induction was obtained from callus treated with MS medium containing 4.0 and 5.0 mg l?1 TDZ + 0.5 mg l?1 GA3 with NaCl up to 125 mM and 150 mM for Rosetta and Victoria, respectively. When plantlets were cultured on MS medium containing 3.0 mg l?1 kinetin and 1.0 mg l-1paclobutrazol (PBZ) with 80 or 90 g l?1 sucrose after two months gave a good microtuber per explant of Rosetta and Victoria cultivar which gave number of microtuber/plantlet (1.85) and (2.40) when plantlets treated with 125 mM and 150 mM NaCl of Rosetta and Victoria cultivar, respectively. In general, the results were shown in each treatment of NaCl and that amounts of proline at 125 and 150 mMNaCl were significantly more than 0.0, 50, 75 and 100 mM NaCl. This result is related to the role of proline in the osmotic adjustment of a higher concentration of salinity. The results showed that the amounts of sodium increased with increasing the salt concentration, but the amount of potassium decreased and also increased the Na+/K+ ratio with increasing the salt concentration. This research is important for in vitro potato plant regeneration, which requires optimization before genetic transformation can be achieved.  相似文献   

13.
Crop productivity is greatly affected by soil salinity; therefore, improvement in salinity tolerance of crops is a major goal in salt-tolerant breeding. The Salt Overly Sensitive (SOS) signal-transduction pathway plays a key role in ion homeostasis and salt tolerance in plants. Here, we report that overexpression of Arabidopsis thaliana SOS1+SOS2+SOS3 genes enhanced salt tolerance in tall fescue. The transgenic plants displayed superior growth and accumulated less Na+ and more K+ in roots after 350 mM NaCl treatment. Moreover, Na+ enflux, K+ influx, and Ca2+ influx were higher in the transgenic plants than in the wild-type plants. The activities of the enzyme superoxide dismutase, peroxidase, catalase, and proline content in the transgenic plants were significantly increased; however, the malondialdehyde content decreased in transgenic plants compared to the controls. These results suggested that co-expression of A. thaliana SOS1+SOS2+SOS3 genes enhanced the salt tolerance in transgenic tall fescue.  相似文献   

14.
15.
The comparative responses of young olive trees (Olea europaea L. cv “Chemlali”) to different NaCl salinity levels were investigated over 11 months. One-year-old own rooted plants were grown in 10-L pots containing sand and perlite mixture (1:3 v/v). Trees were subjected to three irrigation treatments: CP (control plants that were irrigated with fresh water); SS1 (salt stressed plants irrigated with water containing 100 mM NaCl) and SS2 plants (salt stressed plants irrigated with water containing 200 mM NaCl). Shoot elongation rate, relative water content, leaf water potential and net carbon dioxide exchange rates decreased significantly with increased NaCl salinity level. Under stressed conditions, the increase of Na+ and Cl ions in both leaves and roots was accompanied with that of proline and soluble sugars. The above results show that the accumulation of proline and sugars under stressed conditions could play a role in salt tolerance. The absence of toxicity symptoms under both stress treatments and the superior photosynthetic activity recorded in SS1-treated plants suggest that cv Chemlali is better able to acclimatize to 100 mM NaCl than at 200 mM NaCl. Our findings indicate that saline water containing 100 mM NaCl, the most available water in arid region in Tunisia, can be recommended for the irrigation of cv Chemlali in the arid south of Tunisia.  相似文献   

16.
The effects of salinity and its combination with silicon (Si) were studied in ‘Nova’ mandarin plants grafted on Citrus aurantium L. or Swingle Citrumelo to determine: (1) which combination is more tolerant to salt stress and (2) the impact of Si in limiting the harmful effects of salinity. Six groups of plants were grown in a greenhouse for 120 days and irrigated with: (1) 50 % Hoagland’s solution (Control), (2) 50 % Hoagland’s solution plus 80 mM NaCl (NaCl), and (3) 50 % Hoagland’s solution plus 80 mM NaCl plus 0.5 mM Si (NaCl + Si). Grafted plants exhibited accumulation of Na and Cl in their tissues following exposure to salinity. The ability of S. Citrumelo to retain the toxic ions in the roots in corroboration with the observation that the dry weights (DWs) of S. Citrumelo tissues were not influenced by NaCl treatment indicates that this rootstock is more tolerant to salinity. Silicon supplementation into the saline medium promoted the accumulation of toxic ions, whereas, when compared to NaCl treatment, it increased the DW of S. Citrumelo roots. Mineral concentrations were significantly affected by rootstock, treatment, and their interaction with S. Citrumelo, which presented better nutrient status than Sour Orange; and Si which differed depending on citrus tissue. It appears that S. Citrumelo rootstock is the most tolerant for ‘Nova’ mandarin plants under salinity, whereas salt tolerance in grafted citrus plants is not improved by Si application, indicating that the beneficial role of Si depends on the cultivar or rootstock–scion combinations.  相似文献   

17.
Cultivating salt-tolerant crops is a feasible way to effectively utilize saline-alkali land and solve the problem of underutilization of saline soils. Quinoa, a protein-comprehensive cereal in the plant kingdom, is an exceptional crop in terms of salt stress tolerance level. It seems an excellent model for the exploration of salt-tolerance mechanisms and cultivation of salt-tolerant germplasms. In this study, the seeds and seedlings of the quinoa cultivar Shelly were treated with different concentrations of NaCl solution. The physiological, biochemical characteristics and agronomic traits were investigated, and the response patterns of three salt stress-responsive genes (SSRGs) in quinoa were determined by real-time PCR. The optimum level of stress tolerance of quinoa cultivar Shelly was found in the range of 250–350 mM concentration of NaCl. Salt stress significantly induced expression of superoxide dismutase (SOD), peroxidase (POD), and particularly betaine aldehyde dehydrogenase (BADH). BADH was discovered to be more sensitive to salt stress and played an important role in the salt stress tolerance of quinoa seedlings, particularly at high NaCl concentrations, as it displayed upregulation until 24 h under 100 mM salt treatment. Moreover, it showed upregulation until 12 h under 250 mM salt stress. Taken together, these results suggest that BADH played an essential role in the salt-tolerance mechanism of quinoa. Based on the expression level and prompt response induced by NaCl, we suggest that the BADH can be considered as a molecular marker for screening salt-tolerant quinoa germplasm at the early stages of crop development. Salt treatment at different plant ontogeny or at different concentrations had a significant impact on quinoa growth. Therefore, an appropriate treatment approach needs to be chosen rationally in the process of screening salt-tolerant quinoa germplasm, which is useful to the utilization of saline soils. Our study provides a fundamental information to deepen knowledge of the salt tolerance mechanism of quinoa for the development of salt-tolerant germplasm in crop breeding programs.  相似文献   

18.
A greenhouse experiment was conducted to investigate the effects of silicon application on Phaseolus vulgaris L. under two levels of salt stress (30 and 60 mM NaCl in the irrigation water). Salinity significantly reduced growth, stomatal conductance and net photosynthetic rate, and increased Na+ and Cl content mainly in roots. Silicon application enhanced growth of salt stressed plants, significantly reduced Na+ content especially in leaves and counterbalanced the effects of NaCl on gas exchange; the effect was more evident at 30 mM NaCl. Cl content in shoots and roots was not significantly modified by silicon application; the drop in K+ content caused by salinity was partially counterbalanced by silicon, especially in roots.  相似文献   

19.
Cytokinins are often considered abscisic acid (ABA) antagonists and auxins antagonists/synergists in various processes in plants. Seed enhancement (seed priming) with cytokinins is reported to increase plant salt tolerance. It was hypothesized that cytokinins could increase salt tolerance in wheat plants by interacting with other plant hormones, especially auxins and ABA. The present studies were therefore conducted to assess the effects of pre-sowing seed treatment with varying concentrations (100, 150 and 200 mg l−1) of cytokinins (kinetin and benzylaminopurine (BAP)) on germination, growth, and concentrations of free endogenous auxins and ABA in two hexaploid spring wheat (Triticum aestivum L.) cultivars. The primed and non-primed seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m−1 NaCl salinity. Both experiments were repeated during 2002 and 2003. Among priming agents, kinetin was effective in increasing germination rate in the salt-intolerant and early seedling growth in the salt-tolerant cultivar when compared with hydropriming under salt stress. Thus, during germination and early seedling growth, the cytokinin-priming induced effects were cultivar specific. In contrast, kinetin-priming showed a consistent promoting effect in the field and improved growth and grain yield in both cultivars under salt stress. The BAP-priming did not alleviate the inhibitory effects of salinity stress on the germination and early seedling growth in both cultivars. The increase in growth and grain yield in both cultivars was positively correlated with leaf indoleacetic acid concentration and negatively with ABA concentration under both saline and non-saline conditions. The decrease in ABA concentration in the plants raised from kinetin-primed seeds might reflect diminishing influence of salt stress. However, the possibility of involvement of other hormonal interactions is discussed.  相似文献   

20.
Salinity extent and severity is rising because of poor management practices on agricultural lands, possibility lies to grow salt‐tolerant crops with better management techniques. Therefore, a highly nutritive salt‐tolerant crop quinoa with immense potential to contribute for future food security was selected for this investigation. Soil drenching of paclobutrazol (PBZ; 20 mg l?1) was used to understand the ionic relations, gaseous exchange characteristics, oxidative defense system and yield under saline conditions (400 mM NaCl) including normal (0 mM NaCl) and no PBZ (0 mg l?1) as controls. The results revealed that salinity stress reduced the growth and yield of quinoa through perturbing ionic homeostasis with the consequences of overproduction of reactive oxygen species (ROS), oxidative damages and reduced photosynthesis. PBZ improved the quinoa performance through regulation of ionic homeostasis by decreasing Na+, Cl?, while improving K+, Mg2+ and Ca2+ concentration. It also enhanced the antioxidative system including ascorbic acid, phenylalanine ammonia‐lyase, polyphenol oxidase and glutathione peroxidase, which scavenged the ROS (H2O2 and O2?‐) and lowered the oxidative damages (malondialdehyde level) under salinity in roots and more specifically in leaf tissues. The photosynthetic rate and stomatal conductance consequently improved (16 and 21%, respectively) in salt‐stressed quinoa PBZ‐treated compared to the non‐treated ones and contributed to the improvement of panicle length (33%), 100‐grain weight (8%) and grain yield (38%). Therefore, PBZ can be opted as a shotgun approach to improve quinoa performance and other crops under high saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号