首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We used lovastatin, a specific inhibitor of HMG-CoA reductase, to study the role of cholesterol synthesis in regulation of both bile acid synthesis, measured by release of 14CO2 from [26-14C]cholesterol, and biliary cholesterol secretion, measured by standard marked perfusion techniques, in humans. Six volunteers were studied in each of four periods: a) control; b) 6-10 hours after a single 40 mg oral dose of lovastatin to study acute effects; c) after 5-6 weeks of lovastatin 40 mg orally twice a day to study steady-state effects; and d) 24 h after cessation of chronic lovastatin. Mean bile acid synthesis fell to 69% of control (P less than 0.01) after single-dose lovastatin and remained at 83% of control after 5-6 weeks on lovastatin (P less than 0.05). After withdrawal of lovastatin, mean bile acid synthesis was 88% of control (NS). Mean biliary cholesterol secretion did not change after single-dose lovastatin (103% of control), but fell to 81% of control during chronic lovastatin treatment (P less than 0.05). After withdrawal of lovastatin, mean cholesterol secretion remained at 80% of control (P less than 0.05). These data suggest that in humans cholesterol synthesis is an immediate regulator of bile acid synthesis. Cholesterol synthesis also regulates biliary cholesterol secretion, but the effect is not immediate and therefore may be indirect.  相似文献   

2.
Thyroid hormone lowers serum cholesterol and alters sterol metabolic processes. This laboratory has previously reported increased biliary lipid secretion as an early effect of triiodothyronine (T3) in the rat. To evaluate whether the bile lipid action of T3 is a primary or secondary effect, the isolated-perfused rat liver model was used. Red blood cells in lipid-free buffer were used to perfuse livers of euthyroid and methimazole-hypothyroid rats, as well as hypothyroid rats given T3 at intervals before perfusion. Bile flow was maintained by taurocholate perfusion. Hypothyroid rats had elevated pre-perfusion serum cholesterol compared to euthyroid (107 +/- 4 vs. 65 +/- 2 mg/dl) and decreased biliary cholesterol (0.016 +/- 0.001 vs. 0.031 +/- 0.004 mumol/g liver/h) secretion. Serum cholesterol decreased to euthyroid levels by 18 h after T3, an effect that was prevented by bile duct ligation. Bile cholesterol secretion doubled by 18 h, and reached levels twice euthyroid by 42 h, while phospholipid secretion doubled to levels just above euthyroid. The fourfold increase in biliary cholesterol secretion occurred with lipid-free perfusion and unchanging bile acid uptake or output. It occurred without a fall in hepatic lipoprotein cholesterol secretion. Blockade of cholesterol synthesis with lovastatin failed to alter T3-augmented bile cholesterol secretion. We conclude that T3 induces biliary cholesterol secretion concomitantly with the fall in serum cholesterol. This augmented biliary secretion did not appear to depend upon lipoprotein uptake, increased bile acid transport, or cholesterol synthesis. It did not occur at the expense of hepatic lipoprotein secretion. Facilitated biliary lipid secretion may be a primary effect of T3.  相似文献   

3.
The goal of the current study was to determine the mechanism of the hypocholesterolemic effect of psyllium using a randomized, double-blind, crossover design. Twenty males (age 44 +/- 4 yr, weight 79 +/- 10 kg) with moderate hypercholesterolemia (total 265 +/- 17 mg/dl, low density lipoprotein (LDL) 184 +/- 15 mg/dl) were studied at baseline (B) and after randomization to receive a 40-day course of 15 g/day of either psyllium (Ps) or placebo (Pl) (cellulose). After a washout period (11 +/- 2 days), subjects were crossed over to the other fiber treatment for an additional 40 days and restudied. Intestinal cholesterol absorption, cholesterol synthesis in isolated peripheral blood mononuclear cells, bile acid kinetics, gallbladder motility, and intestinal transit were measured at each study period. Psyllium lowered LDL cholesterol (x:184 (B), 169 (Ps), and 179 (Pl) mg/dl; Ps vs. B,Pl: P less than 0.004, P less than 0.02), decreased relative cholesterol absorption (x:51 (B), 45 (Ps), and 49 (Pl) %; Ps vs. B,Pl: P less than 0.03, P less than 0.03), did not alter absolute cholesterol absorption, and increased the fractional turnover of both chenodeoxycholic acid (x:0.176 (B), 0.203 (Ps), and 0.170 (Pl) day-1; Ps vs. B,Pl: P less than 0.0001, P less than 0.01) and cholic acid (x:0.303 (B), 0.411 (Ps), and 0.301 (Pl) d-1; Ps vs. B, Pl: P less than 0.006, P less than 0.002). Bile acid synthesis increased in subjects whose LDL cholesterol was lowered by more than 10% (Ps vs. B: 1304 +/- 489 vs 992 +/- 307 mumol/day, P less than 0.006; Ps vs. PI: 1304 +/- 489 vs. 914 +/- 321 mumol/day, P less than 0.0002). We conclude that psyllium lowers LDL cholesterol primarily via stimulation of bile acid synthesis.  相似文献   

4.
Contraceptive steroids increase cholesterol in bile: mechanisms of action   总被引:4,自引:0,他引:4  
Contraceptive steroids increase the risk of acquiring cholesterol gallstones. The factors responsible include an increase in cholesterol saturation of bile and an increase in rate of secretion of cholesterol into bile. The goal of this study was to investigate the mechanism(s) of these increases in biliary cholesterol. During the use of contraceptive steroids, cholesterol saturation of gallbladder bile and the amount of cholesterol secreted per mole of bile acid increased (P less than 0.05 and P less than 0.02, respectively). Cholesterol absorption, cholesterol synthesis, chylomicron remnant clearance, and the concentration of plasma and lipoprotein lipids were not altered by contraceptive steroids. Despite this apparent lack of effect, important correlations were present during steroid use. LDL (low density lipoprotein) cholesterol increased as dietary cholesterol increased (r = 0.58, P less than 0.025). Cholesterol synthesis correlated directly with VLDL cholesterol concentration (r = 0.64, P less than 0.01), biliary cholesterol secretion (r = 0.68, P less than 0.01) and with molar percent cholesterol in bile (r = 0.49, P = 0.06). Chylomicron remnant clearance also correlated with cholesterol secretion (r = 0.85, P less than 0.001). As either remnant uptake or synthesis increased, the effect of the other source of hepatic cholesterol on biliary cholesterol secretion diminished. These relationships were not observed in the same subjects when they were not taking the hormones. The findings suggest that both newly synthesized and dietary cholesterol contribute to the cholesterol secreted in bile. This is consistent with the hypothesis that cholesterol for secretion into bile and VLDL is derived from a common metabolic pool of free cholesterol. It is proposed that contraceptive steroids exert their effect on biliary cholesterol by increasing cholesterol entering the pool and/or by inhibiting hepatic ACAT (acylcoenzyme A:cholesterol acyltransferase) activity, a known effect of progesterone, so that an increase in free cholesterol entering the pool leads to an increase in output.  相似文献   

5.
There is evidence that increased availability of taurine enhances the proportion of taurine-conjugated bile acids in bile. To explore the possibility that taurine treatment could also influence hepatic cholesterol and bile acid metabolism, we fed female hamsters for 1 week and measured both the biliary lipid content and the microsomal level of the rate-limiting enzymes of cholesterol and bile acid synthesis. In these animals the cholesterol 7 alpha-hydroxylase activity was significantly greater in respect to controls (P less than 0.05). The total HMG-CoA reductase activity, as well as that of the active form, was similarly increased. The stimulation of 7 alpha-hydroxycholesterol synthesis was associated with an expansion of the bile acid pool size in taurine-fed animals. Taurine feeding was observed to induce an increase in bile flow as well as in the rate of excretion of bile acids, whereas the secretion rate of cholesterol in bile was decreased. As a consequence, the saturation index was significantly lower in taurine-fed animals (P less than 0.05). The possible mechanisms through which taurine exhibits the modification of the enzyme activities and of the biliary lipid composition are discussed.  相似文献   

6.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

7.
The mechanism by which competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase decrease serum cholesterol is incompletely understood. The few available data in humans suggest that chronic administration of the competitive inhibitor, lovastatin, decreases serum cholesterol with little or no change in total body sterol synthesis. To further define the effect of lovastatin on cholesterol synthesis in normal subjects, we investigated the effect of a single oral dose of lovastatin and a 4-week treatment period of lovastatin on mononuclear leukocyte (ML) sterol synthesis as a reflection of total body sterol synthesis. In parallel, we measured serum lipid profiles and HMG-CoA reductase activity in ML microsomes that had been washed free of lovastatin. ML sterol synthesis did not significantly decrease (23 +/- 5%, mean +/- SEM) at 3 h after a single 40-mg dose of lovastatin. With a single oral 80-mg dose, ML sterol synthesis decreased by 57 +/- 10% (P less than 0.05) and remained low for the subsequent 6 h. With both doses, total HMG-CoA reductase enzyme activity in microsomes prepared from harvested mononuclear leukocytes was induced 4.8-fold (P less than 0.01) over baseline values. Both the 20-mg bid dose and the 40-mg bid dose of lovastatin administered for a 4-week period decreased serum cholesterol by 25-34%. Lovastatin at 20 mg bid decreased ML sterol synthesis by 23 +/- 6% (P less than 0.02) and increased ML HMG-CoA reductase 3.8 times (P less than 0.001) the baseline values. Twenty four hours after stopping lovastatin, ML sterol synthesis and HMG-CoA reductase enzyme activity had returned to the baseline values. The higher dose of lovastatin (40 mg bid) decreased ML sterol synthesis by 16 +/- 3% (P less than 0.05) and induced HMG-CoA reductase to 53.7 times (P less than 0.01) the baseline value at 4 weeks. Stopping this higher dose effected a rebound in ML sterol synthesis to 140 +/- 11% of baseline (P less than 0.01), while HMG-CoA reductase remained 12.5 times baseline (P less than 0.01) over the next 3 days. No rebound in serum cholesterol was observed. From these data we conclude that in normal subjects lovastatin lowers serum cholesterol with only a modest effect on sterol synthesis. The effect of lovastatin on sterol synthesis in mononuclear leukocytes is tempered by an induction of HMG-CoA reductase enzyme quantity, balancing the enzyme inhibition by lovastatin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Significant cholesterol synthesis occurs in gut mucosa of animals and humans. However, the role of gut synthesis in hypercholesterolemia and the effect of drugs on this function have not been defined. We obtained jejunal biopsies and bile samples from 21 Type II hypercholesterolemic subjects (mean serum cholesterol = 331 mg/dl) on a low fat diet after an over-night fast. Whole gut mucosal homogenate was assayed for activity of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the rate-determining enzyme of cholesterol synthesis. Mean reductase activity (pmol/mg per min) was 5.5 +/- 1.0 (n = 21) in hypercholesterolemic subjects versus 11.3 +/- 1.0 in 52 normal subjects (P less than 0.01). This is consistent with the hypothesis that the primary defect in these patients is not excessive cholesterol synthesis but decreased low density lipoprotein (LDL) clearance. It implies that high LDL levels down-regulate gut reductase activity. After treatment of 7 patients with lovastatin (40-80 mg/day for at least 6-13 weeks), gut reductase activity decreased from 7.7 +/- 2.6 to 3.6 +/- 0.5 (P less than 0.05), in biopsies obtained 12 hr after the last drug dose. Inhibition of reductase activity by this drug was detected 12 hr after a dose, and the enzyme was not measurably induced during 6-13 weeks of therapy. In keeping with the decrease in serum cholesterol (332----239 mg/dl) and mucosal reductase activity during lovastatin therapy, mean gallbladder bile cholesterol saturation index also decreased (1.045 +/- 0.112 vs. 0.883 +/- 0.109, n = 7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

10.
We investigated the effect of ileal bile acid transport on the regulation of classic and alternative bile acid synthesis in cholesterol-fed rats and rabbits. Bile acid pool sizes, fecal bile acid outputs (synthesis rates), and the activities of cholesterol 7alpha-hydroxylase (classic bile acid synthesis) and cholesterol 27-hydroxylase (alternative bile acid synthesis) were related to ileal bile acid transporter expression (ileal apical sodium-dependent bile acid transporter, ASBT). Plasma cholesterol levels rose 2.1-times in rats (98 +/- 19 mg/dl) and 31-times (986 +/- 188 mg/dl) in rabbits. The bile acid pool size remained constant (55 +/- 17 mg vs. 61 +/- 18 mg) in rats but doubled (254 +/- 46 to 533 +/- 53 mg) in rabbits. ASBT protein expression did not change in rats but rose 31% (P < 0.05) in rabbits. Fecal bile acid outputs that reflected bile acid synthesis increased 2- and 2.4-times (P < 0.05) in cholesterol-fed rats and rabbits, respectively. Cholesterol 7alpha-hydroxylase activity rose 33% (24 +/- 2.4 vs. 18 +/- 1.6 pmol/mg/min, P < 0.01) and mRNA levels increased 50% (P < 0.01) in rats but decreased 68% and 79%, respectively, in cholesterol-fed rabbits. Cholesterol 27-hydroxylase activity remained unchanged in rats but rose 62% (P < 0.05) in rabbits. Classic bile acid synthesis (cholesterol 7alpha-hydroxylase) was inhibited in rabbits because an enlarged bile acid pool developed from enhanced ileal bile acid transport. In contrast, in rats, cholesterol 7alpha-hydroxylase was stimulated but the bile acid pool did not enlarge because ASBT did not change. Therefore, although bile acid synthesis was increased via different pathways in rats and rabbits, enhanced ileal bile acid transport was critical for enlarging the bile acid pool size that exerted feedback regulation on cholesterol 7alpha-hydroxylase in rabbits.  相似文献   

11.
To further define thyroid hormone effects on bile acid synthesis and biliary lipid secretion, studies were done in chronic bile fistula rats. Euthyroid and methimazole-hypothyroid rats, with and without triiodothyronine (T3) injection, had total bile diversion for timed bile collections. With interrupted enterohepatic circulation, cholesterol absorption is negligible and bile acid secretion equals bile acid synthesis rate. Hypothyroid rats had diminished levels of bile acid synthesis and biliary secretion of cholesterol and phospholipid. Single dose T3 injection produced a 13-fold increase in bile cholesterol secretion and a 3-fold increase in phospholipid secretion, both initiated 12 h after T3. Bile acid synthesis increased by 50%, but the increase did not begin until 24 h after T3. Neither hypothyroidism nor T3 treatment abolished diurnal rhythms of bile acid synthesis and biliary lipid secretion. Inhibition of cholesterol synthesis with lovastatin resulted in a persistent 33% decrease in bile acid synthesis in euthyroid and hypothyroid rats, while bile cholesterol secretion only transiently decreased. Inhibition of cholesterol synthesis did not alter T3-induced bile cholesterol secretion, with a 10-fold increase seen. However, bile acid synthesis was not stimulated by T3 in the presence of lovastatin. We conclude that facilitated bile acid synthesis and biliary cholesterol secretion are early effects of T3 and may account for the hypocholesterolemia of T3. Cholesterol synthesis does not appear to be required for the T3-induced bile cholesterol secretion.  相似文献   

12.
Contraceptive steroids alter the steady-state kinetics of bile acids   总被引:2,自引:0,他引:2  
Contraceptive steroids increase the ratio of cholic acid to chenodeoxycholic acid in bile. This alteration may contribute to the development of cholesterol gallstones. The objective of this study was to measure the effects of contraceptive steroids on bile acid kinetics and to relate them to changes in cholesterol metabolism. Steady-state kinetics of bile acids were measured in 15 healthy women, on and off contraceptive steroids. Cholic acid synthesis increased 30.3% (P less than 0.025) and its pool increased by 37.4% (P less than 0.025). Chenodeoxycholic acid synthesis decreased 6.4% (P = 0.08) and its pool decreased by 11.8% (P less than 0.05) during use of contraceptive steroids. The fractional turnover rates of both primary bile acids did not change. The changes in kinetics of the primary bile acids were related to alterations in biliary lipid and cholesterol metabolism, separately reported. (J. Lipid Res. 1987. 28: 828-839). During use of contraceptive steroids, total bile acid pool and total bile acid synthesis correlated directly with cholesterol synthesis, assayed in mononuclear leukocytes (r = 0.50 and r = 0.54, respectively) but not with the plasma clearance of chylomicron remnants, measured with retinyl palmitate. The data indicate that contraceptive steroids directly alter the hepatic synthesis of bile acids and suggest that newly synthesized cholesterol may be a preferred substrate for bile acid synthesis during use of contraceptive steroids.  相似文献   

13.
Cholesterol synthesis in the perfused liver of pregnant hamsters   总被引:2,自引:0,他引:2  
Pregnancy is a risk factor for the development of cholesterol gallstones. In pregnant women, biliary cholesterol saturation and secretion are increased. To investigate whether this was due to increased cholesterol synthesis, we studied hepatic cholesterol synthesis in Syrian Golden hamsters. Female controls and animals 10- to 14-days pregnant were studied. The studies were performed in the in situ perfused hamster liver. Cholesterol synthesis was determined by measuring the incorporation of 3H2O added to the perfusate into hepatic, perfusate, and bile cholesterol during a 90-min period. In both pregnant groups, bile flow decreased significantly, but biliary cholesterol concentration increased only in the 14-day pregnant group. The cholesterol synthesis rate averaged (mean +/- SD) 172 +/- 27, 127 +/- 37, and 552 +/- 79 nmol X hr-1 X g liver-1 in controls, 10-day, and 14-day pregnant animals, respectively. The 14-day pregnant animals secreted a markedly higher fraction (47.3 +/- 11.3 vs. 11.1 +/- 13.4%; P less than 0.01) of newly synthesized cholesterol into bile but not into perfusate. Chenodeoxycholate, but not cholate, synthesis rate was decreased in both pregnant groups. We conclude from our studies that hepatic cholesterol synthesis increases towards the end of pregnancy in the hamster and that more newly synthesized cholesterol is secreted into bile at that time. This could at least partially explain the increased biliary cholesterol saturation and secretion observed in women in the third trimenon, and explain pregnancy as a risk factor in the development of cholesterol gallstones.  相似文献   

14.
The effect of two inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, lovastatin and monacolin L, and an inhibitor of acyl coenzyme A:cholesterol acyltransferase (ACAT), Sandoz compound 58-035, on the interaction of 125I-labeled high density lipoprotein-3 (HDL3) with isolated human enterocytes was studied. Both HMG-CoA reductase inhibitors inhibited cholesterol synthesis and 125I-labeled HDL3 binding and degradation by enterocytes; a strong correlation between changes in cholesterol synthesis and interaction of 125I-labeled HDL3 with cells was observed. Lovastatin caused reduction of the apparent number of 125I-labeled HDL3 binding sites without affecting the binding affinity. No changes of cell cholesterol content were observed after incubation of cells with lovastatin. Mevalonic acid reversed the effect of lovastatin on 125I-labeled HDL3 binding. Lovastatin blocked up-regulation of the HDL receptor in response to loading of cells with nonlipoprotein cholesterol and modified cholesterol-induced changes of 125I-labeled HDL3 degradation. Lovastatin also reduced HDL-mediated efflux of endogenously synthesized cholesterol from enterocytes. The ACAT inhibitor caused a modest increase of 125I-labeled HDL3 binding to enterocytes and significantly decreased its degradation; both effects correlated with inhibition of cholesteryl ester synthesis. The results allow us to assume that the intracellular free cholesterol pool may play a key role in regulation of the HDL receptor.  相似文献   

15.
Hepatic bile acid synthesis is thought to be under negative feedback control by bile salts in the enterohepatic circulation, acting at the level of cholesterol 7 alpha-hydroxylase (C7 alpha H), the initial and rate-limiting step in the bile acid biosynthetic pathway. Bile salts also suppress the activity of the rate-limiting enzyme for cholesterol synthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA-R). The mechanisms of these regulatory effects are poorly understood, and one or both may be indirect. Previous data suggest that the hydrophilic-hydrophobic balance of bile salts, a major determinant of their cholesterol solubilizing properties, also determines their potency as regulators of bile acid and cholesterol synthesis. To further evaluate the relationship between the physicochemical and regulatory properties of bile acids, we altered the composition of the bile salt pool of rats by feeding one or more of seven different bile acids (1% w/w for 14 days). We then determined the mean hydrophilic-hydrophobic balance (hydrophobicity index) of the bile salts in bile, and correlated this with the specific activities of C7 alpha H and HMG-CoA-R, and of acyl-CoA:cholesterol acyltransferase (ACAT), a third hepatic microsomal enzyme which regulates cholesterol esterification. In all instances following bile acid feeding, conjugates of the fed bile acid(s) became the predominant bile salts in bile. Highly significant negative linear correlations (each P less than 0.0001) were found between the hydrophobicity indices of biliary bile salts and the activities of C7 alpha H (r = 0.79) or HMG-CoA-R (r = 0.63). By contrast, no significant correlation could be demonstrated between ACAT activity and the hydrophobicity index of biliary bile salts. The correlation between activities of HMG-CoA-R and C7 alpha H was also highly significant (r = 0.81; P less than 0.0001). No significant correlation existed between ACAT and either HMG-CoA-R or C7 alpha H. Microsomal free cholesterol was not consistently altered by bile acid feeding. Thus, the potency of circulating bile salts as suppressors of the enzymes regulating bile acid and cholesterol synthesis increases with increasing hydrophobicity. The hydrophobic-hydrophilic balance of the bile salt pool may play an important role in the regulation of cholesterol and bile acid synthesis.  相似文献   

16.
The present study describes a novel technique for investigations of the enterohepatic circulation in the hamster with an extracorporeal bile duct that allows long-term bile collection in the free-moving animal. The animals recovered for 7 days after the operation before the external loop was cut and bile was collected over a period of 78 h. Under these optimal conditions, initial bile flow (651 +/- 89 microliters per 100 g.h-1) and the secretion rates of biliary lipids were several-fold higher than reported in an earlier study using the acute fistula hamster. Biliary cholesterol secretion amounted to 369 +/- 32 nmol per 100 g.h-1, phospholipid secretion was 2.6 +/- 0.3 mumol per 100 g.h-1, and total bile acid secretion was 31.9 +/- 2.2 mumol per 100 g.h-1. A clearcut diurnal rhythm was demonstrated for bile flow and all biliary constituents. After 9 h the depletion of the bile acid pool was complete and cholic acid synthesis derepressed 1.4-fold from a basal rate of 818 nmol per 100 g.h-1, whereas the derepression of chenodeoxycholic acid synthesis was even less pronounced. Biliary cholesterol output increased 2.2-fold, but the phospholipid secretion was constant during the full experiment. It may be concluded that the technique of an extracorporeal bile duct in the free-moving animal allows studies of bile secretion under optimal conditions. Most likely the bile secretion rates given above approach the physiological rates in the hamster.  相似文献   

17.
A report on the effects of primary bile acid ingestion alone or in combination with plant sterols on serum cholesterol levels, biliary lipid secretion, and bile acid metabolism. Biliary bile acid and cholesterol secretion were measured in four patients with type IIa hypercholesterolemia before and after randomized treatment periods. During these periods either a bile acid mixture (cholic-chenodeoxycholic 2:1, a proportion similar to that endogenously synthesized in health), at a level of 20 mg/kg, or the same mixture plus sitosterols, 200 mg/kg, was fed. Serum cholesterol and the cholesterol saturation of fasting-state bile was also measured. Pretreatment biliary lipid secretion was within normal limits. Bile acid kinetic measurements were also recorded before treatment and showed that cholic acid synthesis was disproportionately decreased relative to that of chenodeoxycholic acid, a finding previously reported by others. Administration of the bile acid mixture increased biliary bile acid secretion in 3 of 4 patients, but did not influence biliary cholesterol secretion. The combination of sitosterol-bile acid, however, caused a relative decrease in cholesterol secretion in bile, and fasting-state bile became unsaturated in all patients. No change in fecal neutral sterol excretion occurred during the beta-sitosterol-bile acid regimen, suggesting that simultaneous bile acid feeding blocks the compensatory increase in cholesterol synthesis known to be induced by beta-sitosterol feeding in hypercholesterolemic patients. Serum cholesterol levels also fell modestly during the sitosterol-bile acid regimen, the decrease averaging 15%. We conclude that the abnormally low rate of bile acid synthesis in patients with type IIa hyperlipoproteinemia does not influence biliary lipid secretion; that increasing the input of the two primary bile acids into the enterohepatic circulation does not increase biliary cholesterol secretion or lower serum cholesterol levels in such patients; and that the usual increase in cholesterol synthesis induced by beta-sitosterol feeding does not occur if bile acids are administered simultaneously.  相似文献   

18.
Hepatic free cholesterol levels are influenced by cholesterol synthesis and ester formation, which, in turn, might regulate cholesterol secretion into bile and plasma. We manipulated the rates of hepatic cholesterol synthesis and esterification and measured biliary and very low density lipoprotein (VLDL) cholesterol secretion, and bile acid synthesis. Mevalonate decreased HMG CoA reductase by 80%, increased acyl coenzyme A: cholesterol acyltransferase (ACAT) by 60% and increased [3H]oleate incorporation into microsomal and VLDL cholesteryl esters by 174% and 122%, respectively. Microsomal and biliary free cholesterol remained constant at the expense of increased microsomal and VLDL cholesteryl ester content. Mevalonate did not change bile acid synthesis. 25-OH cholesterol decreased HMG-CoA reductase by 39%, increased ACAT by 24%, but did not effect 7 alpha-hydroxylase. 25-OH cholesterol increased [3H]oleate in microsomal and VLDL cholesterol esters by 71% and 120%. Biliary cholesterol decreased by 40% and VLDL cholesteryl esters increased by 83%. A small and unsustained decrease in bile acid synthesis (14CO2 release) occurred after 25-OH cholesterol. After orotic acid feeding, HMG-CoA reductase increased 352%, and [3H]oleate in microsomal and VLDL cholesteryl esters decreased by 43% and 89%. Orotic acid decreased all VLDL components including free cholesterol (68%) and cholesteryl esters (55%), and increased biliary cholesterol by 160%. No change in bile acid synthesis occurred. Hepatic cholesterol synthesis and esterification appear to regulate a cholesterol pool available for both biliary and VLDL secretion. Changing cholesterol synthesis and esterification did not alter bile acid synthesis, suggesting that either this common bile/VLDL secretory pool is functionally distinct from the cholesterol pool used for bile salt synthesis, or that free cholesterol availability in this precursor pool is not a major determinant of bile acid synthesis.  相似文献   

19.
Optimally effective lipid-lowering agents should not only restore plasma lipids to normal levels but also correct potentially atherogenic alterations in lipoprotein composition and function often present in hyperlipidemic patients. Lovastatin, a competitive inhibitor of cholesterol biosynthesis, clearly lowers plasma cholesterol levels. Its effects on lipoprotein composition and cholesteryl ester transfer (CET), a key step in reverse cholesterol transport, however, are not known. Since abnormalities in CET and lipoprotein composition are present in patients with hypercholesterolemia, we studied these parameters of plasma lipoprotein transport in twelve hypercholesterolemic (HC; Type IIa) subjects (six male, six female) before and 2 months after lovastatin treatment (20 mg qd). Before lovastatin, the free cholesterol (FC)/lecithin (L) ratio in plasma, a new index of cardiovascular risk that reflects lipoprotein surface composition, was abnormally increased (1.18 +/- 0.26 vs controls 0.83 +/- 0.14; P less than 0.001) in very low density lipoproteins (VLDL) and high density lipoprotein-3 (HDL3), and remained so after treatment despite significant declines in whole plasma cholesterol (311.7 +/- 68.2 vs 215.6 +/- 27.2 mg/dl; P less than 0.001), low density lipoprotein (LDL)-cholesterol (206.3 +/- 47.9 vs 146.8 +/- 29.4; P less than 0.001), and apolipoprotein B (149 +/- 30 vs 110 +/- 17; P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Extensive studies in animal models indicate that subclinical ascorbic acid deficiency impairs the conversion of cholesterol to bile acid, elevates plasma cholesterol levels, and predisposes to development of cholesterol cholelithiasis. The present study was designed to see if this is also true in man. Five normal volunteers were hospitalized in a metabolic ward and placed on a controlled diet containing 3-4 mg of ascorbic acid each day. Ascorbic acid supplementation was given as follows: control period I (days 1-33), 75 mg/day; deficient period (days 34-96), 0 mg/day; and repletion period (days 97-101), 1000 mg/day. In addition, three of the subjects were studied during a second control period (days 102-139) during which they were given 75 mg/day of ascorbic acid. Ascorbate levels at the end of both control periods were 0.87-1.34 mg/dl in plasma and 19.4-29.5 micrograms/10(8) cells in leukocytes. At the end of the deficient period these levels were 0.09-0.15 mg/dl in plasma and 6.2-10.0 micrograms/10(8) cells in leukocytes, levels approaching those seen in scurvy. There was no effect of ascorbic acid deficiency on plasma cholesterol and triglycerides; plasma cholesterol in high, very low, and low density lipoprotein fractions; biliary lipid composition and saturation index of gallbladder bile; synthesis, fractional turnover, or pool size of either cholic or chenodeoxycholic acids; output of fecal acid or neutral sterols; and fecal sterol balance. Total bile acid pool size calculated by the one-sample technique was reduced 11% in the deficient period compared to control period I (P less than 0.005), and increased to 98.7% of the baseline levels in control period II. However, total bile acid pool calculated by the Lindstedt method did not change during deficiency. These data demonstrate that short-term subclinical ascorbic acid deficiency near the scorbutic range has no significant effect on bile acid and cholesterol metabolism in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号