首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In order to investigate the influence of fatty acid pattern and antioxidants other than vitamin E on lipid peroxidation and antioxidant levels of plasma very low density and low density lipoproteins (VLDL + LDL), the effects of three diets (equalized for vitamin E) containing soybean oil, olive oil, or an oleate-rich mixture of triglycerides (triolein) were studied in rats. A significantly lower concentration of thiobarbituric acid-reactive substances (TBA-RS) in plasma and lipoproteins was found after the olive oil diet (soybean oil, 3.7 +/- 0.4 nmol/ml; triolein, 2.1 +/- 0.5 nmol/ml; olive oil, 1.5 +/- 0.3 nmol/ml, in plasma) (soybean oil, 0.99 +/- 0.16 nmol/ml; triolein, 0.96 +/- 0.13 nmol/ml; olive oil, 0.38 +/- 0.12 nmol/ml, in the VLDL + LDL fraction). Furthermore, the results from in vitro copper-induced lipid peroxidation, expressed in terms of conjugated dienes, lipid hydroperoxides, and TBA-RS content, showed that VLDL + LDL particles from olive olive oil-fed rats were remarkably resistant to oxidative modification. The results suggest that the fatty acid unsaturation of dietary oils is not the only determining factor of the antioxidant capacity of lipoproteins in this animal model. The maximal protection observed after the olive oil diet may be explained by the presence of other unidentified antioxidants in addition to vitamin E, derived from oil intake. Therefore, the optimal balance between the content of unsaturated fatty acids and natural antioxidants in dietary oils appears to be of major importance.  相似文献   

2.
It has been shown that treating hypercholesterolemic patients (HPC) with statins leads to a decrease, at least in plasma, not only in cholesterol, but also in important non-sterol compounds such as ubiquinone (CoQ10), and possibly dolichols, that derive from the same biosynthetic pathway. Plasma CoQ10 decrease might result in impaired antioxidant protection, therefore leading to oxidative stress. In the present paper we investigated the levels in plasma, lymphocytes and erythrocytes, of ubiquinol and ubiquinone, other enzymatic and non-enzymatic lipophilic and hydrophilic antioxidants, polyunsaturated fatty acids of phosfolipids and cholesterol ester fractions, as well as unsaturated lipid and protein oxidation in 42 hypercholesterolemic patients treated for 3 months. The patients were treated with different doses of 3 different statins, i.e. atorvastatin 10 mg (n = 10) and 20 mg (n = 7), simvastatin, 10 mg (n = 5) and 20 mg (n = 10), and pravastatin, 20 mg (n = 5) and 40 mg (n = 5). Simvastatin, atorvastatin and pravastatin produced a dose dependent plasma depletion of total cholesterol (t-CH), LDL-C, CoQ10H2, and CoQ10, without affecting the CoQ10H2/CoQ10 ratio. The other lipophilic antioxidants (d-RRR-alpha-tocopherol-vit E-, gamma-tocopherol, vit A, lycopene, and beta-carotene), hydrophilic antioxidants (vit C and uric acid), as well as, TBA-RS and protein carbonyls were also unaffected. Similarly the erythrocyte concentrations of GSH and PUFA, and the activities of enzymatic antioxidants (Cu,Zn-SOD, GPx, and CAT) were not significantly different from those of the patients before therapy. In lymphocytes the reduction concerned CoQ10H2, CoQ10, and vit E; other parameters were not investigated. The observed decline of the levels of CoQ10H2 and CoQ10 in plasma and of CoQ10H2, CoQ10 and vit E in lymphocytes following a 3 month statin therapy might lead to a reduced antioxidant capacity of LDL and lymphocytes, and probably of tissues such as liver, that have an elevated HMG-CoA reductase enzymatic activity. However, this reduction did not appear to induce a significant oxidative stress in blood, since the levels of the other antioxidants, the pattern of PUFA as well as the oxidative damage to PUFA and proteins resulted unchanged. The concomitant administration of ubiquinone with statins, leading to its increase in plasma, lymphocytes and liver may cooperate in counteracting the adverse effects of statins, as already pointed out by various authors on the basis of human and animal studies.  相似文献   

3.
The present study was designed to investigate the possible potential protective role of coenzymeQ10 (CoQ10; 10 mg/kg/day, ip) and/or green tea (GT; 25mg/kg/day, po) against gentamicin (GM) nephrotoxicity. Marked increase in the level of serum urea. creatinine and lipid peroxidation (LPO) content was found after administration of gentamicin (80 mg/kg/day, ip) for eight days along with significant decrease in the antioxidant enzymes, superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) as well as brush border enzymes (Na+/K+ ATPase, Mg(+2)ATPase and Ca2+ ATPase).Treatment with CoQ10 or green tea alone with GM showed significant decrease in serum urea, creatinine and tissue LPO content and significant increase in antioxidant and membrane bound enzymes. Combined treatment with CoQ10 and green tea was more effective in mitigating adverse effect of GM nephrotoxicity. The present work indicated that CoQ10 and green tea due to their antioxidant activity modified the biochemical changes occurred during gentamicin nephrotoxicity and thus had a potential protective effect.  相似文献   

4.
BACKGROUND: There is evidence that plasma CoQ(10) levels decrease in patients with advanced chronic heart failure (CHF). OBJECTIVE: To investigate whether oral CoQ(10) supplementation could improve cardiocirculatory efficiency in patients with CHF. METHODS: We studied 21 patients in NYHA class II and III (18M, 3W, mean age 59 +/- 9 years) with stable CHF secondary to ischemic heart disease (ejection fraction 37 +/- 7%), using a double-blind, placebo-controlled cross-over design. Patients were assigned to oral CoQ(10) (100 mg tid) and to placebo for 4 weeks, respectively. RESULTS: CoQ(10) supplementation resulted in a threefold increase in plasma CoQ(10) level (P < 0.0001 vs placebo). Systolic wall thickening score index (SWTI) was improved both at rest and peak dobutamine stress echo after CoQ(10) supplementation (+12.1 and 15.6%, respectively, P < 0.05 vs placebo). Left ventricular ejection fraction improved significantly also at peak dobutamine (15% from study entry P < 0.0001) in relation to a decrease in LV end-systolic volume index (from 57 +/- 7 mL/m(2) to 45 mL/m(2), P < 0.001). Improvement in the contractile response was more evident among initially akinetic (+33%) and hypokinetic (+25%) segments than dyskinetic ones (+6%). Improvement in SWTI was correlated with changes in plasma CoQ(10) levels (r = -0.52, P < 0.005). Peak VO(2) was also improved after CoQ(10) as compared with placebo (+13%, <0.005). No side effects were reported with CoQ(10). CONCLUSIONS: Oral CoQ(10) improves LV contractility in CHF without any side effects. This improvement is associated with an enhanced functional capacity.  相似文献   

5.
Life-long low-dosage supplementation of coenzyme Q(10) (CoQ(10)) is studied in relation to the antioxidant status and DNA damage. Thirty-two male rats were assigned into two experimental groups differing in the supplementation or not with 0.7 mg/kg/day of CoQ(10). Eight rats per group were killed at 6 and 24 months. Plasma retinol, alpha-tocopherol, coenzyme Q, total antioxidant capacity and fatty acids were analysed. DNA strand breaks were studied in peripheral blood lymphocytes. Aging and supplementation led to significantly higher values for CoQ homologues, retinol and alpha-tocopherol. No difference in total antioxidant capacity was detected at 6 months but significantly lower values were found in aged control animals. Similar DNA strand breaks levels were found at 6 months. Aging led to significantly higher DNA strand breaks levels in both groups but animals supplemented with CoQ(10) led to a significantly lower increase in that marker. Aged rats showed significantly higher polyunsaturated fatty acids. This study demonstrates that lifelong intake of a low dosage of CoQ(10) enhances plasma levels of CoQ(9), CoQ(10), alpha-tocopherol and retinol. In addition, CoQ(10) supplementation attenuates the age-related fall in total antioxidant capacity of plasma and the increase in DNA damage in peripheral blood lymphocytes.  相似文献   

6.
Substantial evidence implicates oxidative modification of low density lipoprotein (LDL) as an important event contributing to atherogenesis. As a result, the elucidation of the molecular mechanisms by which LDL is oxidized and how such oxidation is prevented by antioxidants has been a significant research focus. Studies on the antioxidation of LDL lipids have focused primarily on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, plasma LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q10). Recent studies have shown that in oxidizing plasma lipoproteins alpha-TOH can exhibit anti- or pro-oxidant activities for the lipoprotein's lipids exposed to a vast array of oxidants. This article reviews the molecular action of alpha-TOH in LDL undergoing "mild" radical-initiated lipid peroxidation, and discusses how small levels of CoQ10H2 can represent an efficient antioxidant defence for lipoprotein lipids. We also comment on the levels alpha-TOH, CoQ10H2 and lipid oxidation products in the intima of patients with coronary artery disease and report on preliminary studies examining the effect of coenzyme Q10 supplementation on atherogenesis in apolipoprotein E knockout mice.  相似文献   

7.
Coenzyme Q10 (CoQ10) concentration in blood cells was analyzed by HPLC and compared to plasma concentration before, during, and after CoQ10 (3 mg/kg/day) supplementation to human probands. Lymphocyte DNA 8-hydroxydeoxy-guanosine (8-OHdG), a marker of oxidative stress, was analyzed by Comet assay. Subjects supplemented with CoQ10 showed a distinct response in plasma concentrations after 14 and 28 days. Plasma levels returned to baseline values 12 weeks after treatment stopped. The plasma concentration increase did not affect erythrocyte levels. However, after CoQ10 supplementation, the platelet level increased; after supplementation stopped, the platelet level showed a delayed decrease. A positive correlation was shown between the plasma CoQ10 level and platelet and white blood cell CoQ10 levels. During CoQ10 supplementation, delayed formation of 8-OHdG in lymphocyte DNA was observed; this effect was long-lasting and could be observed even 12 weeks after supplementation stopped. Intracellular enrichment may support anti-oxidative defense mechanisms.  相似文献   

8.
Currently, diets higher in polyunsaturated fat are believed to lower blood cholesterol concentrations, and thus reduce atherosclerosis, greater than diets containing high amounts of saturated or possibly even monounsaturated fat. The present study was designed to investigate the effect of diets containing mid- or high-linoleic oil versus the typical high-linoleic sunflower oil on LDL oxidation and the development of early atherosclerosis in a hypercholesterolemic hamster model. Animals were fed a hypercholesterolemic diet containing 10% mid-oleic sunflower oil, high-oleic olive oil, or high-linoleic sunflower oil (wt/wt) plus 0.4% cholesterol (wt/wt) for 10 weeks. After 10 weeks of dietary treatment, only the animals fed the mid-oleic sunflower oil had significant reductions in plasma LDL-C levels (-17%) compared to the high-linoleic sunflower oil group. The high-oleic olive oil-fed hamsters had significantly higher plasma triglyceride levels (+41%) compared to the high-linoleic sunflower oil-fed hamsters. The tocopherol levels in plasma LDL were significantly higher in hamsters fed the mid-oleic sunflower oil (+77%) compared to hamsters fed either the high-linoleic sunflower or high-oleic olive oil. Measurements of LDL oxidation parameters, indicated that hamsters fed the mid-oleic sunflower oil and high-oleic olive oil diets had significantly longer lag phase (+66% and +145%, respectively) and significantly lower propagation rates (-26% and -44%, respectively) and conjugated dienes formed (-17% and -25%, respectively) compared to the hamsters fed the high-linoleic sunflower oil. Relative to the high-linoleic sunflower oil, aortic cholesterol ester was reduced by -14% and -34% in the mid-oleic sunflower oil and high-oleic olive oil groups, respectively, with the latter reaching statistical significance. Although there were no significant associations between plasma lipids and lipoprotein cholesterol with aortic total cholesterol and cholesterol esters for any of the groups, the lag phase of conjugated diene formation was inversely associated with both aortic total and esterified cholesterol in the high-oleic olive oil-fed hamsters (r = -0.69, P < 0.05). The present study suggests that mid-oleic sunflower oil reduces risk factors such as lipoprotein cholesterol and oxidative stress associated with early atherosclerosis greater than the typical high-linoleic sunflower oil in hypercholesterolemic hamsters. The high-oleic olive oil not only significantly reduced oxidative stress but also reduced aortic cholesterol ester, a hallmark of early aortic atherosclerosis greater than the typical high-linoleic sunflower oil.  相似文献   

9.
The effects of diets enriched with cholesterol and different fats upon plasma lipoproteins and hepatic low density lipoprotein (LDL) receptor mRNA levels were studied in a group of 18 normal baboons. Animals were fed diets containing 1% cholesterol and 25% fat as either coconut oil, peanut oil, or olive oil for a period of 20 weeks. Plasma total cholesterol, high density lipoprotein (HDL) cholesterol, beta-lipoprotein (LDL + very low density lipoprotein) cholesterol, apolipoprotein B and apolipoprotein A-I were measured in samples obtained at 4-week intervals. All three diet groups demonstrated a statistically significant increase in plasma cholesterol as compared to base line throughout the experiment. Hepatic LDL receptor (LDL-R) mRNA levels were quantified by dot blot hybridization in serial liver biopsies. Animals fed saturated fat sustained a significant reduction in hepatic LDL-R mRNA as compared to those fed either monounsaturated or polyunsaturated fat. A strong negative correlation between LDL-R mRNA and plasma total cholesterol (r = -0.71), HDL cholesterol (r = -0.76), and plasma apo A-I (r = -0.77) was observed only in those animals fed coconut oil. Weak negative correlations between LDL-R mRNA and other plasma parameters did not achieve statistical significance. We conclude that saturated and unsaturated oils may influence plasma cholesterol levels in part through differential effects on LDL receptor biosynthesis in baboons.  相似文献   

10.
Health benefits of lycopene from tomato products have been suggested to be related to its antioxidant activity. Dietary fat may influence the absorption and hence the plasma levels and antioxidant activity of lycopene. In the present study, we have compared the effect of consumption of tomato products with extra-virgin olive oil vs. tomato products plus sunflower oil on plasma lycopene and antioxidant levels. Results show that the oil composition does not affect the absorption of lycopene from tomato products because similar levels of plasma lycopene (mean +/- SD) were obtained on feeding tomatoes (providing approximately 46 mg lycopene/d) for 7 d with either olive oil (0.66 +/- 0.26 vs 1.20 +/- 0.20 micromol/l, p <.002) or sunflower oil (0.67 +/- 0.27 vs. 1.14 micromol/l, p <.001). However, consumption of tomato products with olive oil significantly raised the plasma antioxidant activity (FRAP) from 930 +/- 150 to 1118 +/- 184 micromol/l, p <.01) but no effect was observed when the sunflower oil was used. The change (supplementation minus start values) in FRAP following the consumption of tomato products with oil was significantly higher for olive oil (190 +/- 101) than for sunflower oil (-9.6 +/- 99, p <. 005). In conclusion, the results of the study show that consumption of tomato products with olive oil but not with sunflower oil improves the antioxidant activity of the plasma.  相似文献   

11.
The efficacy of ω3 fatty acid ethyl esters was evaluated in 10 mildly hypertriglyceridemic patients in this randomized, placebo-controlled, double-blind, crossover trial. Patients were given capsules (1 per 10 kg body weight) containing 640 mg/g of ω3 fatty acids or an olive oil placebo for two 4-week treatment periods separated by a 1-week washout phase. Plasma lipids, lipoproteins, and apolipoproteins: phospholipid FA composition; the susceptibility to oxidation of the apolipoprotein B-100 containing lipoproteins; and bleeding times were determined at the end of each period. Plasma triglyceride levels were reduced by 37% (P < 0.001), whereas low density lipoprotein cholesterol and the cholesterol content of subfraction 2 of high density lipoproteins increased by 23 and 56%, respectively (both P < 0.02). Changes in plasma lipid parameters and in phospholipid FA patterns occurred rapidly, usually stabilizing within 1 week, and returned to baseline levels within 10 days after stopping supplementation with ω3 fatty acids. Bleeding times were not changed. However, the susceptibility of lipoproteins to oxidation was increased during the ω3 fatty acid period. We conclude that ω3 fatty acid ethyl esters are effective hypotriglyceridemic agents, and that they impact lipoprotein metabolism very quickly. How they may alter the atherogenic process is not clear from this study because some risk factors worsened and other improved.  相似文献   

12.
The purpose of the present study was to evaluate the effects of MUFA vs PUFA enriched diets on the plasma and LDL lipid profile and antioxidant contents in mild hypercholesterolemic and triglyceridemic subjects. The study was divided in two consecutive diet periods. Two groups of 11 dyslipidemic patients each (type IIb and type IV) were recruited and during the first period (lasting four weeks) received a linoleic rich diet while during the following four weeks took an oleate rich diet. Both groups showed no significant changes in cholesterol and TG concentration either in plasma or in LDL. Coenzyme Q10 and vitamin E were also unaffected by the dietary treatments. LDL proneness to be oxidatively modified increased after dietary PUFA administration and markedly decreased following the virgin olive oil enriched diet. In fact, LDL from hypertrigliceridemic subjects on a oleate-enriched diet displayed a 26% (p < 0.05) longer lag-phase in conjugated dienes generation than during linoleate-enriched diet and at recruitment. In hypercholesterolemic subjects similar results were obtained: the lag-phase was 28% longer after MUFA diet that after PUFA diet. No differences were found in the maximum propagation rate and maximum concentration of conjugated dienes among dietary periods and at recruitment. Since we found that the vit. E and CoQ10 levels in plasma and in LDL particles remained unchanged during the course of the study, we may conclude that LDL proneness to undergo oxidative modifications is mainly the result of compositional change due to the enrichment from the different diets of the relative fats.  相似文献   

13.
The aim of this study was to inquire the antioxidant status in plasma and lipoproteins isolated from normal subjects possessing different ApoE genotypes. For this purpose we investigated blood samples from 106 healthy blood donors: the distribution of ApoE alleles (E2/E2 = 0.9%, E2/E3 = 10.4%, E2/E4 = 2.8%, E3/E3 = 71.7%, E3/E4 = 12.3% and E4/E4 1.9% with 1, 11, 3, 76, 13, and 2 subjects respectively for each genotype) was in agreement with previous data. Almost no differences were found in the concentrations of both coenzyme Q10 (CoQ10) and vitamin E for the different genotypes. Concentration of CoQ10 in isolated lipoproteins was also similar, in the different genotypes, when referred to cholesterol; CoQ10 in LDL was higher for the E3/E3 subjects when referred to protein. Neither CoQ10 nor vitamin E correlated with paraoxonase (PON) activity or cholesteryl-ester hydroperoxides (CHP). Furthermore, there was no correlation between the same lipophilic antioxidants and CHP levels. The only E2 homozygous subject found had high levels of PON and low levels of CHP; the two E4/E4 subjects had low PON activity together with low levels of CHP.  相似文献   

14.
The antioxidant status of coenzyme Q10 (CoQ10) was investigated in plasma, erythrocytes, and platelets of juvenile patients with anorexia nervosa. Blood for analysis of the CoQ10 status was taken from 16 juvenile patients suffering from anorexia nervosa (restricting form) at the time point of admission to the hospital and at discharge after about 12 weeks. Plasma and blood cells isolated by a density gradient were stored at -84 °C until analysis. CoQ10 concentration and redox status were measured by high pressure liquid chromatography with electrochemical detection and internal standardization. The improvement of physical health during the hospital refeeding process was followed up by the body mass index (BMI). The antioxidant status of plasma CoQ10 in juvenile patients suffering from anorexia nervosa indicated no abnormalities in comparison to healthy controls. However, the decreased concentration of CoQ10 observed in platelets at the time point of hospital admission may represent mitochondrial CoQ10 depletion. This initial deficit improved during the hospital refeeding process. The platelet CoQ10 concentration showed a positive correlation to the BMI of the patients.  相似文献   

15.
Thalassemia is a group of genetic disorders resulting from different mutations in the globin gene complex and leading to an imbalance in globin synthesis. Unmatched globin chains are less stable and susceptible to oxidation. Patients with beta-thalassemia/HbE are prone to increased oxidative stress as indicated by increased lipid peroxidation product, malondialdehyde (MDA), partly because of the presence of iron in the form of heme and hemichromes released from excess globin chains and excess iron deposition in various tissues. The level of antioxidant such as glutathione is markedly decreased while activities of antioxidant enzymes including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) are increased. We have recently found that the levels of coenzyme Q(10) (CoQ(10)) are also very low in thalassemia. We therefore evaluated the oxidative stress and the antioxidants in these patients before and after supplementation with 100 mg CoQ(10) daily for 6 months. The results showed that the plasma level of CoQ(10) significantly increased and the oxidative stress decreased as the level of MDA declined. The administration of CoQ(10) led to significant improvement of biochemical parameters of antioxidant enzymes. The antioxidant supplementation will be beneficial for thalassemia patients as adjunct therapy to increase their quality of life.  相似文献   

16.
Ubiquinol-10 (CoQH2, the reduced form of coenzyme Q10) is a potent antioxidant present in human low-density lipoprotein (LDL). Supplementation of humans with ubiquinone-10 (CoQ, the oxidized coenzyme) increased the concentrations of CoQH2 in plasma and in all of its lipoproteins. Intake of a single oral dose of 100 or 200 mg CoQ increased the total plasma coenzyme content by 80 or 150%, respectively, within 6 h. Long-term supplementation (three times 100 mg CoQ/day) resulted in 4-fold enrichment of CoQH2 in plasma and LDL with the latter containing 2.8 CoQH2 molecules per LDL particle (on day 11). Approx. 80% of the coenzyme was present as CoQH2 and the CoQH2/CoQ ratio was unaffected by supplementation, indicating that the redox state of coenzyme Q10 is tightly controlled in the blood. Oxidation of LDL containing various [CoQH2] by a mild, steady flux of aqueous peroxyl radicals resulted immediately in very slow formation of lipid hydroperoxides. However, in each case the rate of lipid oxidation increased markedly with the disappearance of 80-90% CoQH2. Moreover, the cumulative radical dose required to reach this 'break point' in lipid oxidation was proportional to the amount of CoQH2 incorporated in vivo into the LDL. Thus, oral supplementation with CoQ increases CoQH2 in the plasma and all lipoproteins thereby increasing the resistance of LDL to radical oxidation.  相似文献   

17.
Coenzyme Q (CoQ(10)) is a component of the mitochondrial electron transport chain and also a constituent of various cellular membranes. It acts as an important in vivo antioxidant, but is also a primary source of O(2)(-*)/H(2)O(2) generation in cells. CoQ has been widely advocated to be a beneficial dietary adjuvant. However, it remains controversial whether oral administration of CoQ can significantly enhance its tissue levels and/or can modulate the level of oxidative stress in vivo. The objective of this study was to determine the effect of dietary CoQ supplementation on its content in various tissues and their mitochondria, and the resultant effect on the in vivo level of oxidative stress. Rats were administered CoQ(10) (150 mg/kg/d) in their diets for 4 and 13 weeks; thereafter, the amounts of CoQ(10) and CoQ(9) were determined by HPLC in the plasma, homogenates of the liver, kidney, heart, skeletal muscle, brain, and mitochondria of these tissues. Administration of CoQ(10) increased plasma and mitochondria levels of CoQ(10) as well as its predominant homologue CoQ(9). Generally, the magnitude of the increases was greater after 13 weeks than 4 weeks. The level of antioxidative defense enzymes in liver and skeletal muscle homogenates and the rate of hydrogen peroxide generation in heart, brain, and skeletal muscle mitochondria were not affected by CoQ supplementation. However, a reductive shift in plasma aminothiol status and a decrease in skeletal muscle mitochondrial protein carbonyls were apparent after 13 weeks of supplementation. Thus, CoQ supplementation resulted in an elevation of CoQ homologues in tissues and their mitochondria, a selective decrease in protein oxidative damage, and an increase in antioxidative potential in the rat.  相似文献   

18.
A possible difference in antioxidant activity between reduced coenzyme Q9 (CoQ9H2) and reduced coenzyme Q10 (CoQ10H2) in animal cells was studied by incubation of hepatocytes with a hydrophilic radical initiator, 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH). Two kinds of hepatocytes differing in their content of CoQ homologs were used: rat, total (oxidized plus reduced) CoQ9: total CoQ10 6:1, guinea pig, 1:5. The sum of total CoQ9 and CoQ10 in rat and guinea-pig hepatocytes was about 780 and 400 pmol/mg protein, respectively. The concentration of CoQ9H2 in rat hepatocytes decreased linearly after the addition of AAPH, whereas that of oxidized CoQ9 showed a reciprocal increase. No loss of cell viability or increase of lipid peroxidation was observed until most of the CoQ9H2 had been consumed. Cellular CoQ9H2 was consumed probably through scavenging of lipid peroxyl radicals produced by incubation with AAPH. On the other hand, CoQ10H2 was not significantly consumed in the AAPH-treated rat hepatocytes during incubation compared with the control cells. In guinea-pig hepatocytes, cellular CoQ10H2 as well as CoQ9H2 was consumed by addition of AAPH. alpha-Tocopherol also showed linear consumption with incubation time regardless of the cell types used. It is concluded that CoQ9H2, together with alpha-tocopherol, constantly acts as a potential antioxidant in hepatocytes when incubated with AAPH, whereas CoQ10H2 mainly exhibits its antioxidant activity in cells containing CoQ10 as the predominant CoQ homolog.  相似文献   

19.
Although coenzyme Q10 (CoQ10) is a component of the oxidative phosphorylation process in mitochondria that converts the energy in carbohydrates and fatty acids into ATP to drive cellular machinery and synthesis, its effect in type I diabetes is not clear. We have studied the effect of 4 wk of treatment with CoQ10 (10 mg/kg, ip, daily) in streptozotocin (STZ)-induced (40 mg/kg, iv in adult rats) type I diabetes rat models. Treatment with CoQ10 produced a significant decrease in elevated levels of glucose, cholesterol, triglycerides, very-low-density lipoprotein, lowdensity lipoprotein, and atherogenic index and increased high-density lipoprotein cholesterol levels in diabetic rats. CoQ10 treatment significantly decreased the area under the curve over 120 min for glucose in diabetic rats, without affecting serum insulin levels and the area under the curve over 120 min for insulin in diabetic rats. CoQ10 treatment also reduced lipid peroxidation and increased antioxidant parameters like superoxide dismutase, catalase, and glutathione in the liver homogenates of diabetic rats. CoQ10 also lowered the elevated blood pressure in diabetic rats. In conclusion, CoQ10 treatment significantly improved deranged carbohydrate and lipid metabolism of experimental chemically induced diabetes in rats. The mechanism of its beneficial effect appears to be its antioxidant property.  相似文献   

20.
Mitochondrial dysfunction and oxidative stress participate in the development of diabetic complications, however, the mechanisms of their origin are not entirely clear. Coenzyme Q has an important function in mitochondrial bioenergetics and is also a powerful antioxidant. Coenzyme Q (CoQ) regenerates alpha-tocopherol to its active form and prevents atherogenesis by protecting low-density lipoproteins against oxidation. The aim of this study was to ascertain whether the experimentally induced diabetes mellitus is associated with changes in the content of endogenous antioxidants (alpha-tocopherol, coenzymes Q9 and Q10) and in the intensity of lipoperoxidation. These biochemical parameters were investigated in the blood and in the isolated heart and liver mitochondria. Diabetes was induced in male Wistar rats by a single intravenous injection of streptozotocin (45 mg x kg(-1)), insulin was administered once a day for 8 weeks (6 U x kg(-1)). The concentrations of glucose, cholesterol, alpha-tocopherol and CoQ homologues in the blood of the diabetic rats were increased. The CoQ9/cholesterol ratio was reduced. In heart and liver mitochondria of the diabetic rats we found an increased concentration of alpha-tocopherol, however, the concentrations of CoQ9 and CoQ10 were decreased. The formation of malondialdehyde was enhanced in the plasma and heart mitochondria. The results have demonstrated that experimental diabetes is associated with increased lipoperoxidation, in spite of the increased blood concentrations of antioxidants alpha-tocopherol and CoQ. These changes may be associated with disturbances of lipid metabolism in diabetic rats. An important finding is that heart and liver mitochondria from the diabetic rats contain less CoQ9 and CoQ10 in comparison with the controls. We suppose that the deficit of coenzyme Q can participate in disturbances of mitochondrial energy metabolism of diabetic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号