首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Comparison of dispersal rates of the bog fritillary butterfly between continuous and fragmented landscapes indicates that between patch dispersal is significantly lower in the fragmented landscape, while population densities are of the same order of magnitude. Analyses of the dynamics of the suitable habitat for the butterfly in the fragmented landscape reveal a severe, non linear increase in spatial isolation of patches over a time period of 30 years (i.e. 30 butterfly generations), but simulations of the butterfly metapopulation dynamics using a structured population model show that the lower dispersal rates in the fragmented landscape are far above the critical threshold leading to metapopulation extinction. These results indicate that changes in individual behaviour leading to the decrease of dispersal rates in the fragmented landscape were rapidly selected for when patch spatial isolation increased. The evidence of such an adaptive answer to habitat fragmentation suggests that dispersal mortality is a key factor for metapopulation persistence in fragmented landscapes. We emphasise that landscape spatial configuration and patch isolation have to be taken into account in the debate about large-scale conservation strategies.  相似文献   

2.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

3.
An important process for the persistence of populations subjected to habitat loss and fragmentation is the dispersal of individuals between habitat patches. Dispersal involves emigration from a habitat patch, movement between patches through the surrounding landscape, and immigration into a new suitable habitat patch. Both landscape and physical condition of the disperser are known to influence dispersal ability, although disentangling these effects can often be difficult in the wild. In one of the first studies of its kind, we used an invertebrate model system to investigate how dispersal success is affected by the interaction between the habitat condition, as determined by food availability, and life history characteristics (which are also influenced by food availability). Dispersal of juvenile and adult mites (male and female) from either high food or low food natal patches were tested separately in connected three patch systems where the intervening habitat patches were suitable (food supplied) or unsuitable (no food supplied). We found that dispersal success was reduced when low food habitat patches were coupled to colonising patches via unsuitable intervening patches. Larger body size was shown to be a good predictor of dispersal success, particularly when the intervening landscape is unsuitable. Our results suggest that there is an interaction between habitat fragmentation and habitat suitability in determining dispersal success: if patches degrade in suitability and this affects the ability to disperse successfully then the effective connectance across landscapes may be lowered. Understanding these consequences will be important in informing our understanding of how species, and the communities in which they are embedded, may potentially respond to habitat fragmentation.  相似文献   

4.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

5.
Bates AJ  Sadler JP  Fowles AP 《Oecologia》2006,150(1):50-60
In common with many habitat elements of riverine landscapes, exposed riverine sediments (ERS) are highly disturbed, naturally patchy and regularly distributed, whose specialists are strongly adapted to flood disturbance and loss of habitat due to succession. Investigations of dispersal in ERS habitats therefore provide an important contrast to the unnaturally fragmented, stable systems usually studied. The present investigation analysed the three interdependent stages of dispersal: (1) emigration, (2) inter-patch movement and (3) immigration of a common ERS specialised beetle, Bembidion atrocaeruleum (Stephens 1828) (Coleoptera, Carabidae), in a relatively unmodified section of river, using mark–resight methods. Dispersal was correlated with estimates of local population size and density, water level and patch quality in order to test for condition-dependent dispersal cues. Flood inundation of habitat was found to increase strongly the overall rate of dispersal, and the rate of emigration was significantly higher from patches that were heavily trampled by cattle. Strongly declining numbers of dispersers with distance suggested low dispersal rates during periods of low water level. Dispersal in response to habitat degradation by cattle trampling would likely lead to a higher overall population fitness than a random dispersal strategy. Dispersal distances were probably adapted to the underlying habitat landscape distribution, high-flow dispersal cues and ready means of long-distance dispersal through hydrochory. Species whose dispersal is adapted to the natural habitat distribution of riverine landscapes are likely to be strongly negatively affected by reduced flood frequency and intensity and habitat fragmentation through flow regulation or channelisation.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

6.
There are few opportunities to evaluate the relative importance of landscape structure and dynamics upon biodiversity, especially in highly fragmented tropical landscapes. Conservation strategies and species risk evaluations often rely exclusively on current aspects of landscape structure, although such limited assumptions are known to be misleading when time-lag responses occur. By relating bird functional-group richness to forest patch size and isolation in ten-year intervals (1956, 1965, 1978, 1984, 1993 and 2003), we revealed that birds with different sensitivity to fragmentation display contrasting responses to landscape dynamics in the Brazilian Atlantic Forest. For non-sensitive groups, there was no time-lag in response: the recent degree of isolation best explains their variation in richness, which likely relates to these species’ flexibility to adapt to changes in landscape structure. However, for sensitive bird groups, the 1978 patch area was the best explanatory variable, providing evidence for a 25-year time-lag in response to habitat reduction. Time-lag was more likely in landscapes that encompass large patches, which can support temporarily the presence of some sensitive species, even when habitat cover is relatively low. These landscapes potentially support the most threatened populations and should be priorities for restoration efforts to avoid further species loss. Although time-lags provide an opportunity to counteract the negative consequences of fragmentation, it also reinforces the urgency of restoration actions. Fragmented landscapes will be depleted of biodiversity if landscape structure is only maintained, and not improved. The urgency of restoration action may be even higher in landscapes where habitat loss and fragmentation history is older and where no large fragment remained to act temporarily as a refuge.  相似文献   

7.
Aim To determine whether the effect of habitat fragmentation and habitat heterogeneity on species richness at different spatial scales depends on the dispersal ability of the species assemblages and if this results in nested species assemblages. Location Agricultural landscapes distributed over seven temperate Europe countries covering a range from France to Estonia. Methods We sampled 16 local communities in each of 24 agricultural landscapes (16 km2) that differ in the amount and heterogeneity of semi‐natural habitat patches. Carabid beetles were used as model organisms as dispersal ability can easily be assessed on morphological traits. The proximity and heterogeneity of semi‐natural patches within the landscape were related to average local (alpha), between local (beta) and landscape (gamma) species richness and compared among four guilds that differ in dispersal ability. Results For species assemblages with low dispersal ability, local diversity increased as the proximity of semi‐natural habitat increased, while mobile species showed an opposite trend. Beta diversity decreased equally for all dispersal classes in relation to proximity, suggesting a homogenizing effect of increased patch isolation. In contrast, habitat diversity of the semi‐natural patches affected beta diversity positively only for less mobile species, probably due to the low dispersal ability of specialist species. Species with low mobility that persisted in highly fragmented landscapes were consistently present in less fragmented ones, resulting in nested assemblages for this mobility class only. Main conclusions The incorporation of dispersal ability reveals that only local species assemblages with low dispersal ability show a decrease of richness as a result of fragmentation. This local species loss is compensated at least in part by an increase in species with high dispersal ability, which obscures the effect of fragmentation when investigated across dispersal groups. Conversely, fragmentation homogenizes the landscape fauna for all dispersal groups, which indicates the invasion of non‐crop habitats by similar good dispersers across the whole landscape. Given that recolonization of low dispersers is unlikely, depletion of these species in modern agricultural landscapes appears temporally pervasive.  相似文献   

8.
Habitat loss and fragmentation are major drivers of biodiversity loss. A key question, particularly relevant to carnivore conservation, is to which extent species are able to survive in human-modified landscapes. Currently, conservationists are concerned about the impact habitat fragmentation may have on the long-term persistence of the forest-dwelling guiña (Leopardus guigna), given the increasingly modified landscapes in which they live. Here we evaluate the effect habitat cover, fragmentation and anthropogenic pressure have on the occupancy probability for guiñas in privately-owned forest fragments. We collected camera-trap data from 100 temperate rainforest sites in Chile and used single-season occupancy modeling to evaluate the influence of 13 parameters of landscape structure/anthropogenic pressure and four parameters of detection probability on the ocurrence of guiñas. The camera-trap survey data comprised 4168 camera-trap days and 112 independent records of guiñas. Surprisingly, fragmented (defined as having a high perimeter-to-area ratio) and moderately sized habitat patches best predicted site occupancy. Occupancy also increased where habitat patches were closer to continuous forest and nearer to buildings. Our results imply that guiñas can benefit from a high degree of edge type habitats in fragmented landscapes, capable of adapting to habitat fragmentation in the proximity to large continuous forest patches. This suggests that guiñas have a broader niche than previously believed. Additionally, the guiña is tolerant of human infrastructure. Further research is required to identify potential ecological traps, long-term source-sink dynamics, and the habitat loss/fragmentation threshold beyond which guiña populations are no longer viable.  相似文献   

9.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

10.
Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among‐patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape‐scale. In this study, we used extensive field data from a fragmented, semi‐arid landscape in Israel to parameterize a multi‐species incidence‐function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics – the metacommunity, the mainland‐island, or the island communities type – best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch‐matrix study landscape is best represented as a system of highly isolated ‘island’ communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33–60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.  相似文献   

11.
In fragmented landscapes, species persistence within isolated habitat patches is governed by a myriad of species life‐history, habitat patch and landscape characteristics. We investigated the inter‐specific variation in non‐forest gap‐crossing abilities of an entire tropical forest‐dependent avifauna. We then related this measure of dispersal ability to species life‐history characteristics and occupancy data from 31 variable‐sized forest patches sampled within the same fragmented forest landscape. A total of 5436 gap‐crossing movements of 231 forest‐dependent bird species were observed across ten linear forest gaps of varying widths, adjacent to large areas of undisturbed forest. Species persistence in isolated fragments was strongly linked to gap‐crossing ability. The most capable gap‐crossers were medium to large‐bodied species in the large insectivore, frugivore and granivore guilds, matching the most prevalent subset of species in small forest patches. However, some competent gap‐crossing species failed to occur in small patches, and minimum forest‐patch area requirements were more important in determining patch occupancy for these species. Narrow forest gaps (4–70 m) created by roads and power‐lines may become territory boundaries, thereby eliminating home‐range gap‐crossing movements for many forest species, but permit rarer dispersal events. Wider gaps (>70 m) may inhibit gap‐crossing behaviour for all but the most vagile species. Although patch size and quality may be the most important factors in structuring species assemblages in forest fragments, our results show that the degree of patch isolation and permeability of the surrounding matrix also explain which species can persist in forest isolates. Reducing the number and width of forest‐dividing gaps; maintaining and/or creating forest corridors and increasing matrix permeability through the creation and maintenance of ‘stepping‐stone’ structures will maximise the species retention in fragmented tropical forest landscapes.  相似文献   

12.
Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008–2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow repopulation rates observed in our study, localized depopulation may be effective at reducing negative ecological impacts of mesopredators in fragmented landscapes at limited spatial and temporal scales.  相似文献   

13.
There is an increasing awareness that not only area and isolation, but also the characteristics of the landscape surrounding habitat patches influence population persistence and species diversity in fragmented landscapes. In this study, we examine the effects of grassland fragmentation and land use in the landscape matrix (on a 2 km scale) on species richness of plants, butterflies, bees and hoverflies. These organisms were studied in replicated remnant patches of different sizes and isolation, embedded in landscapes dominated either by forest, arable land or a mix of these. We found positive effects of patch area on species richness of the three insect taxa, but not of plants. Isolation had a negative effect only on hoverflies. Matrix type had contrasting effects on the studied taxa. Species richness of plants and butterflies was lowest in patches in landscapes dominated by arable land and highest in forest‐dominated landscapes. For hoverflies, the negative effect of small patch area was strongest in forest‐dominated landscapes, and there was a similar non‐significant trend for bees. Our study shows the importance of considering matrix characteristics when studying responses to habitat fragmentation. Differences in matrix response among organism groups probably impinge on differing mechanisms. A forest matrix is likely to provide additional resources for butterflies but either constitute a barrier to dispersal or deprive resources as compared to an arable matrix for hoverflies. Enhanced plant diversity in grassland patches embedded in forested landscapes can be explained by habitat generalists more easily invading these patches, or by an unpaid extinction debt in these landscapes.  相似文献   

14.
Many species inhabit fragmented landscapes, where units of resource have a patchy spatial distribution. While numerous studies have investigated how the incidence and dynamics of individual species are affected by the spatial configuration and landscape context of habitat patches, fewer studies have investigated the dynamics of multiple interacting resource and consumer species in patchy landscapes. We describe a model system for investigating host–parasitoid dynamics in a patchy landscape: a network of 166 holly trees, a specialised herbivore of holly (the leaf miner, Phytomyza ilicis (Curtis, 1948)), and its suite of parasitoids. We documented patch occupancy by P. ilicis, its density within patches, and levels of parasitism over a 6-year period, and manipulated patch occupancy by creating artificially vacant habitat patches. Essentially all patches were occupied by the herbivore in each year, suggesting that metapopulation dynamics are unlikely to occur in this system. The main determinants of densities for P. ilicis and its parasitoids were resource availability (patch size and host density, respectively). While P. ilicis is apparently not restricted by the spatial distribution of resources, densities of its parasitoids showed a weaker positive relationship with host density in more isolated patches. In patches where local extinctions were generated experimentally, P. ilicis densities and levels of parasitism recovered to pre-manipulation levels within a single generation. Furthermore, patch isolation did not significantly affect re-colonisation by hosts or parasitoids. Analysing the data at a variety of spatial scales indicates that the balance between local demography and dispersal may vary depending on the scale at which patches are defined. Taken together, our results suggest that the host and its parasitoids have dispersal abilities that exceed typical inter-patch distances. Patch dynamics are thus largely governed by dispersal rather than within-patch demography, although the role of demography is higher in larger patches.  相似文献   

15.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

16.
Gap percolation in rainforests   总被引:1,自引:0,他引:1  
  相似文献   

17.
Abstract.  1. Metapopulation and island biogeography theory assume that landscapes consist of habitat patches set in a matrix of non-habitat. If only a small proportion of species conform to the patch–matrix assumptions then metapopulation theory may only describe special cases rather than being of more general ecological importance.
2. As an initial step towards understanding the prevalence of metapopulation dynamics in a naturally fragmented landscape, the distribution of beetle species in three replicates of three habitat types was examined, including rainforest and eucalypt forest (the habitat patches), and buttongrass sedgeland (the matrix), in south-west Tasmania, Australia.
3. Ordination methods indicated that the buttongrass fauna was extremely divergent from the fauna of forested habitats. Permutation tests showed that the abundance of 13 of 17 commonly captured species varied significantly among habitats, with eight species confined to eucalypts or rainforest, and three species found only in buttongrass. Approximately 60% of species were confined to forested habitat implying that metapopulation theory has the potential to be very important in the forest–buttongrass landscape.
4. Although floristically the rainforest and eucalypts were extremely distinct, the beetle faunas from eucalypts and rainforests overlapped substantially. Therefore rainforest patches connected by eucalypt forest represent continuous habitat for most species.
5. Other studies report a wide range of values for the proportion of patch-specific species in fragmented landscapes. Understanding the environmental or historical conditions under which a high proportion of species become patch specialists would help to identify where spatial dynamic theory may be especially applicable, and where habitat loss and fragmentation poses the greatest threat to biodiversity.  相似文献   

18.
We characterize allelic and gene expression variation between populations of the Glanville fritillary butterfly (Melitaea cinxia) from two fragmented and two continuous landscapes in northern Europe. The populations exhibit significant differences in their life history traits, e.g. butterflies from fragmented landscapes have higher flight metabolic rate and dispersal rate in the field, and higher larval growth rate, than butterflies from continuous landscapes. In fragmented landscapes, local populations are small and have a high risk of local extinction, and hence the long-term persistence at the landscape level is based on frequent re-colonization of vacant habitat patches, which is predicted to select for increased dispersal rate. Using RNA-seq data and a common garden experiment, we found that a large number of genes (1,841) were differentially expressed between the landscape types. Hexamerin genes, the expression of which has previously been shown to have high heritability and which correlate strongly with larval development time in the Glanville fritillary, had higher expression in fragmented than continuous landscapes. Genes that were more highly expressed in butterflies from newly-established than old local populations within a fragmented landscape were also more highly expressed, at the landscape level, in fragmented than continuous landscapes. This result suggests that recurrent extinctions and re-colonizations in fragmented landscapes select a for specific expression profile. Genes that were significantly up-regulated following an experimental flight treatment had higher basal expression in fragmented landscapes, indicating that these butterflies are genetically primed for frequent flight. Active flight causes oxidative stress, but butterflies from fragmented landscapes were more tolerant of hypoxia. We conclude that differences in gene expression between the landscape types reflect genomic adaptations to landscape fragmentation.  相似文献   

19.
Several factors contribute to the extinction of populations in fragmented habitat but key ones include habitat loss and disruptions to connectivity. Aspects of the ecology of greater gliders (Petauroides volans), along with observations of their response to native forest clearance at a site in southeastern Australia, lead to the prediction in the 1960s that the species would not persist in the replacement exotic pine plantation. However, 35 years later, the species was observed in many remnant native vegetation patches retained within the plantation boundary, albeit at a lower occupancy rate than at matched continuous forest control sites. To determine the role of patch connectivity in persistence of P. volans in remnants, we employed 12 microsatellite markers to genotype individuals from 11 remnants, three contemporary nearby continuous native eucalypt forest sites and a sample collected during native vegetation clearance at the site in the 1960s. Patch samples retained substantially more genetic diversity than expected under an isolation model, suggesting that patches have experienced some immigration. Five putative patch immigrants--two from sampled sites 1- and 7-km distant, and three from unresolved or unsampled localities--were identified via genetic parentage and population assignment analyses. Patch populations displayed varying levels of admixture in Bayesian genetic structure analyses, with the oldest and most geographically isolated ones showing the least admixture, suggesting they have experienced relatively little immigration. Evidence of at least some immigration into patches may explain why P. volans has persisted contrary to expectation in heavily fragmented habitat.  相似文献   

20.
Projected responses of species' to climate change have so far included few of the factors that are important determinants of species' distributions within its range. In this paper we utilise a spatially explicit cellular lattice, colonisation–extinction model to investigate the effect of habitat loss, fragmentation and species characteristics on range shifting in response to climate change. Contrary to the predictions of patch occupancy in static climate models we show that fragmentation can have a positive effect on species survival when species have high colonisation rates. For species with low colonisation rates aggregative behaviours prevent success on fragmented landscapes at high levels of habitat loss, and range shifting is more successfully achieved where habitat is correlated. At levels of habitat loss near the extinction threshold, less fragmented landscapes can facilitate range shifting even for the best colonisers. We discuss how imposing a climate window may reduce percolation routes and have implications for the area of usable habitat at any given level of habitat availability. We demonstrate the importance of landscape structure for range shifting dynamics and argue that management of reserve networks needs to consider the requirements of species with different life history characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号