首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by motoneuron degeneration and muscle paralysis. Although the precise pathogenesis of ALS remains unclear, mutations in Cu/Zn superoxide dismutase (SOD1) account for approximately 20-25% of familial ALS cases, and transgenic mice overexpressing human mutant SOD1 develop an ALS-like phenotype. Evidence suggests that defects in axonal transport play an important role in neurodegeneration. In Legs at odd angles (Loa) mice, mutations in the motor protein dynein are associated with axonal transport defects and motoneuron degeneration. Here, we show that retrograde axonal transport defects are already present in motoneurons of SOD1(G93A) mice during embryonic development. Surprisingly, crossing SOD1(G93A) mice with Loa/+ mice delays disease progression and significantly increases life span in Loa/SOD1(G93A) mice. Moreover, there is a complete recovery in axonal transport deficits in motoneurons of these mice, which may be responsible for the amelioration of disease. We propose that impaired axonal transport is a prime cause of neuronal death in neurodegenerative disorders such as ALS.  相似文献   

2.
Recent studies suggest that microglia over-expressing mutant human superoxide dismutase (mSOD1(G93A)) may contribute to motoneuron death in a transgenic mouse model of familial amyotrophic lateral sclerosis. To further assess the relative neurotoxicity of wild-type microglia, mSOD1(G93A) microglia, and microglia over-expressing wild-type human SOD1, we used primary cultures of microglia and motoneurons in the presence and absence of lipopolysaccharide stimulation. Following activation with lipopolysaccharide, mSOD1(G93A) microglia released more nitric oxide, more superoxide, and less insulin-like growth factor-1 than wild-type microglia. In microglia/motoneuron co-cultures, mSOD1(G93A) microglia induced more motoneuron death and decreased neurite numbers and length compared with wild-type microglia. Mutant SOD1(G93A) microglia also induced more motoneuron injury than microglia over-expressing wild-type human SOD1 in microglia/motoneuron co-cultures. Motoneuron survival was inversely correlated with nitrate + nitrite concentrations in mSOD1(G93A) co-cultures, suggesting the important role of nitric oxide in microglia-induced motoneuron injury. Thus, relative to wild-type microglia, mSOD1(G93A) microglia were more neurotoxic and induced more motoneuron injury than similarly treated wild-type microglia.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABAA receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABAA receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.  相似文献   

4.
Yoo YE  Ko CP 《PloS one》2012,7(5):e37258
Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT), which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by chronic progressive degeneration of motor neurons resulting in muscular atrophy, paralysis, and ultimately death. We have investigated the expression of Wnt1 and Fzd1 in the spinal cords of SOD1G93A ALS transgenic mice, SOD1G93A-transfected N2a cells, and primary cultured astrocytes from SOD1G93A transgenic mice. In addition, we provided further insight into the role of Wnt1 and Fzd1 in the pathogenesis of ALS transgenic mice and discuss the mechanisms underlying the Wnt signal pathway which may be useful in the treatment of ALS. The results indicate the involvement of Wnt1 and Fzd1 in the pathogenesis and development of ALS.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motoneuron degeneration, resulting in muscle paralysis and death, typically within 1-5 years of diagnosis. Although the pathogenesis of ALS remains unclear, there is evidence for the involvement of proteasome dysfunction and heat shock proteins in the disease. We have previously shown that treatment with a co-inducer of the heat shock response called arimoclomol is effective in the SOD(G93A) mouse model of ALS, delaying disease progression and extending the lifespan of SOD(G93A) mice (Kieran et al. 2004). However, this previous study only examined the effects arimoclomol when treatment was initiated in pre- or early symptomatic stages of the disease. Clearly, to be of benefit to the majority of ALS patients, any therapy must be effective after symptom onset. In order to establish whether post-symptomatic treatment with arimoclomol is effective, in this study we carried out a systematic assessment of different treatment regimes in SOD(G93A) mice. Treatment with arimoclomol from early (75 days) or late (90 days) symptomatic stages significantly improved muscle function. Treatment from 75 days also significantly increased the lifespan of SOD(G93A) mice, although treatment from 90 days has no significant effect on lifespan. The mechanism of action of arimoclomol involves potentiation of the heat shock response, and treatment with arimoclomol increased Hsp70 expression. Interestingly, this up-regulation in Hsp70 was accompanied by a decrease in the number of ubiquitin-positive aggregates in the spinal cord of treated SOD(G93A) mice, suggesting that arimoclomol directly effects protein aggregation and degradation.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motoneurons of the spinal cord and motor cortex die, resulting in progressive paralysis. This condition has no cure and results in eventual death, usually within 1-5 years of diagnosis. Although the specific etiology of ALS is unknown, 20% of familial cases of the disease carry mutations in the gene encoding Cu/Zn superoxide dismutase-1 (SOD1). Transgenic mice overexpressing human mutant SOD1 have a phenotype and pathology that are very similar to that seen in human ALS patients. Here we show that treatment with arimoclomol, a coinducer of heat shock proteins (HSPs), significantly delays disease progression in mice expressing a SOD1 mutant in which glycine is substituted with alanine at position 93 (SOD1(G93A)). Arimoclomol-treated SOD1(G93A) mice show marked improvement in hind limb muscle function and motoneuron survival in the later stages of the disease, resulting in a 22% increase in lifespan. Pharmacological activation of the heat shock response may therefore be a successful therapeutic approach to treating ALS, and possibly other neurodegenerative diseases.  相似文献   

8.
Glutamate excitotoxicity is implicated in the aetiology of amyotrophic lateral sclerosis (ALS) with impairment of glutamate transport into astrocytes a possible cause of glutamate-induced injury to motor neurons. It is possible that mutations of Cu/Zn superoxide dismutase (SOD1), responsible for about 20% of familial ALS, down-regulates glutamate transporters via oxidative stress. We transfected primary mouse astrocytes to investigate the effect of the FALS-linked mutant hSOD1(G93A) and wild-type SOD1 (hSOD1wt) on the glutamate uptake system. Using western blotting, immunocytochemistry and RT-PCR it was shown that expression of either hSOD1(G93A) or hSOD1wt in astrocytes produced down-regulation of the levels of a glutamate transporter GLT-1, without alterations in its mRNA level. hSOD1(G93A) or hSOD1wt expression caused a decrease of the monomeric form of GLT-1 without increasing oxidative multimers of GLT-1. The effects were selective to GLT-1, since another glutamate transporter GLAST protein and mRNA levels were not altered. Reflecting the decrease in GLT-1 protein, [3H]d-aspartate uptake was reduced in cultures expressing hSOD1(G93A) or hSOD1wt. The hSOD1-induced decline in GLT-1 protein and [3H]d-aspartate uptake was not blocked by the antioxidant Trolox nor potentiated by antioxidant depletion using catalase and glutathione peroxidase inhibitors. Measurement of 2',7'-dichlorofluorescein (DCF)-induced fluorescence revealed that expression of hSOD1(G93A) or hSOD1wt in astrocytes does not lead to detectable increase of intracellular reactive oxygen species. This study suggests that levels of GLT-1 protein in astrocytes are reduced rapidly by overexpression of hSOD1, and is due to a property shared between the wild-type and G93A mutant form, but does not involve the production of intracellular oxidative stress.  相似文献   

9.
Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1G93A). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1G93A in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1G93A forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1G93A model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1G93A action on mitochondrial dynamics, indicating SOD1G93A likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1G93A inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may actively promote ALS progression.  相似文献   

10.
Dominant mutations in the Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. The molecular mechanism underlying the toxic gain-of-function of mutant hSOD1s remains uncertain. Several lines of evidence suggest that toxicity to motor neurons requires damage to non-neuronal cells. In line with this observation, primary astrocytes isolated from mutant hSOD1 over-expressing rodents induce motor neuron death in co-culture. Mitochondrial alterations have been documented in both neuronal and glial cells from ALS patients as well as in ALS-animal models. In addition, mitochondrial dysfunction and increased oxidative stress have been linked to the toxicity of mutant hSOD1 in astrocytes and neurons. In mutant SOD1-linked ALS, mitochondrial alterations may be partially due to the increased association of mutant SOD1 with the outer membrane and intermembrane space of the mitochondria, where it can affect several critical aspects of mitochondrial function. We have previously shown that decreasing glutathione levels, which is crucial for peroxide detoxification in the mitochondria, significantly accelerates motor neuron death in hSOD1G93A mice. Here we employed a catalase targeted to the mitochondria to investigate the effect of increased mitochondrial peroxide detoxification capacity in models of mutant hSOD1-mediated motor neuron death. The over-expression of mitochondria-targeted catalase improved mitochondrial antioxidant defenses and mitochondrial function in hSOD1G93A astrocyte cultures. It also reverted the toxicity of hSOD1G93A-expressing astrocytes towards co-cultured motor neurons, however ALS-animals did not develop the disease later or survive longer. Hence, while increased oxidative stress and mitochondrial dysfunction have been extensively documented in ALS, these results suggest that preventing peroxide-mediated mitochondrial damage alone is not sufficient to delay the disease.  相似文献   

11.
Astrocytes contribute to the death of motor neurons via non-cell autonomous mechanisms of injury in amyotrophic lateral sclerosis (ALS). Since mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) underlie the neuropathology of some forms of familial ALS, we explored how expression of mutant SOD1 protein A4V SOD1-EGFP affected the biology of secondary murine astrocytes. A4V SOD1-EGFP expressing astrocytes (72 h after transfection) displayed decreased mitochondrial activity (~45%) and l-glutamate transport (~25%), relative to cells expressing wild-type SOD1-EGFP. A4V SOD1-EGFP altered F-actin and Hoechst staining, indicative of cytoskeletal and nuclear changes, and altered GM130 labelling suggesting fragmentation of Golgi apparatus. SOD1 inclusion formation shifted from discrete to “punctate” over 72 h with A4V SOD1-EGFP more rapidly producing inclusions than G85R SOD1-EGFP, and forming more punctate aggregates. A4V, not wild-type SOD1-EGFP, exerted a substantial, time-dependent effect on GFAP expression, and ~60% of astrocytes became stellate and hypertrophic at 72 h. Spreading toxicity was inferred since at 72 h ~80% of bystander cells exhibited hypertrophy and stellation. This evidence favours mutant SOD1-containing astrocytes releasing destructive species that alter the biology of adjacent astrocytes. This panoply of mutant SOD1-induced destructive events favours recruitment of astrocytes to non-cell autonomous injury in ALS.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that primarily affects motoneurons in the brain and spinal cord. Dominant mutations in superoxide dismutase-1 (SOD1) cause a familial form of ALS. Mutant SOD1-damaged glial cells contribute to ALS pathogenesis by releasing neurotoxic factors, but the mechanistic basis of the motoneuron-specific elimination is poorly understood. Here, we describe a motoneuron-selective death pathway triggered by activation of lymphotoxin-β receptor (LT-βR) by LIGHT, and operating by a novel signaling scheme. We show that astrocytes expressing mutant SOD1 mediate the selective death of motoneurons through the proinflammatory cytokine interferon-γ (IFNγ), which activates the LIGHT-LT-βR death pathway. The expression of LIGHT and LT-βR by motoneurons in vivo correlates with the preferential expression of IFNγ by motoneurons and astrocytes at disease onset and symptomatic stage in ALS mice. Importantly, the genetic ablation of Light in an ALS mouse model retards progression, but not onset, of the disease and increases lifespan. We propose that IFNγ contributes to a cross-talk between motoneurons and astrocytes causing the selective loss of some motoneurons following activation of the LIGHT-induced death pathway.  相似文献   

13.
Impaired glutamate uptake function of astrocytes associated with accumulation of extracellular glutamate is a well-documented feature of amyotrophic lateral sclerosis (ALS). Enhancing the uptake function of astrocytic glutamate transport 1 (GLT1) may be a potential treatment for this disease. Human adipose-derived stem cells (hADSCs) are capable of secreting a large number of cytokines which exhibit diverse pharmacological effects. Therefore, we investigate the influence of the soluble factors released by hADSCs on the GLT1 in primary astrocytes cultured from SOD1G93A mice, a widely studied mutant human SOD1 transgenic model of ALS. Our data indicate that soluble factors from hADSCs significantly upregulate the expression of GLT1 in SOD1G93A-bearing astrocytes, which result in enhanced glutamate uptake function. The upregulation of GLT1 is accompanied by the inhibition of caspase-3 activation in mutant astrocytes. In addition, we find that hADSCs cocultured with SOD1G93A-bearing astrocytes produce more VEGF, HGF and IGF-1, which are reported to have neuroprotective effects. Our results suggest that hADSCs may be a potential candidate in cellular therapy for ALS.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition with no cure. Mitochondrial dysfunction, Ca2+ overloading and local hypoxic/ischemic environments have been implicated in the pathophysiology of ALS and are conditions that may initiate metabolic acidosis in the affected tissue. We tested the hypothesis that acidotoxicity and acid-sensing ion channels (ASICs) are involved in the pathophysiology of ALS. We found that motoneurons were selectively vulnerable to acidotoxicity in vitro, and that acidotoxicity was partially reduced in asic1a-deficient motoneuron cultures. Cross-breeding of SOD1G93A ALS mice with asic1a-deficient mice delayed the onset and progression of motor dysfunction in SOD1 mice. Interestingly, we also noted a strong increase in ASIC2 expression in motoneurons of SOD1 mice and sporadic ALS patients during disease progression. Pharmacological pan-inhibition of ASIC channels with the lipophilic amiloride derivative, 5-(N,N-dimethyl)-amiloride hydrochloride, potently protected cultured motoneurons against acidotoxicity, and, given post-symptom onset, significantly improved lifespan, motor performance and motoneuron survival in SOD1 mice. Together, our data provide strong evidence for the involvement of acidotoxicity and ASIC channels in motoneuron degeneration, and highlight the potential of ASIC inhibitors as a new treatment approach for ALS.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.  相似文献   

16.
Abstract: Autosomal dominant familial amyotrophic lateral sclerosis (FALS) is associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Previous studies have implicated the involvement of metabolic dysfunction in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined SOD activity and mitochondrial oxidative phosphorylation enzyme activities in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Cytosolic SOD activity, predominantly Cu/Zn SOD, was decreased ∼50% in all regions in FALS patients with SOD mutations but was not significantly altered in other patient groups. Marked increases in complex I and II–III activities were seen in FALS patients with SOD mutations but not in SALS patients. We also measured electron transport chain enzyme activities in a transgenic mouse model of FALS. Complex I activity was significantly increased in the forebrain of 60-day-old G93A transgenic mice overexpressing human mutant SOD1, relative to levels in transgenic wild-type animals, supporting the hypothesis that the motor neuron disorder associated with SOD1 mutations involves a defect in mitochondrial energy metabolism.  相似文献   

17.
18.
An animal model of familial amyotrophic lateral sclerosis (FALS) has been generated by overexpression of human CuZn superoxide dismutase (SOD1) containing a substitution of glycine to alanine at position 93 in transgenic G93A mice. The loss of motoneurons shown in this model has been attributed to a dominant gain of function of this mutated enzyme, which might be due to copper toxicity. This hypothesis was tested in purified spinal motoneurons cultures originating from G93A transgenic embryos. Spinal motoneurons were isolated from E13 embryos by several steps including density gradient centrifugation. The effect of copper chelators on survival and neurite growth of motoneurons was investigated. Survival of G93A motoneurons was decreased by 46% as compared to wild-type motoneurons. Moreover, G93A motoneurons showed reduced neurite outgrowth. Copper chelators strikingly increased viability of G93A motoneurons (by over 200%) but had no effect on wild-type cells. Presence of DDC in the medium increases the length of neurites from G93A motoneurons. The present results suggest the capacity of copper chelators to reduce the effect of reverse function of mutated SOD1 on motoneurons.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motor neuron degeneration that ultimately results in progressive paralysis and death. Growing evidence indicates that mitochondrial dysfunction and oxidative stress contribute to motor neuron degeneration in ALS. To further explore the hypothesis that mitochondrial dysfunction and nitroxidative stress contribute to disease pathogenesis at the in vivo level, we assessed whether the mitochondria-targeted antioxidant [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl]triphenylphosphonium methane sulfonate (MitoQ) can modify disease progression in the SOD1G93A mouse model of ALS. To do this, we administered MitoQ (500 µM) in the drinking water of SOD1G93A mice from a time when early symptoms of neurodegeneration become evident at 90 days of age until death. This regime is a clinically plausible scenario and could be more easily translated to patients as this corresponds to initiating treatment of patients after they are first diagnosed with ALS. MitoQ was detected in all tested tissues by liquid chromatography/mass spectrometry after 20 days of administration. MitoQ treatment slowed the decline of mitochondrial function, in both the spinal cord and the quadriceps muscle, as measured by high-resolution respirometry. Importantly, nitroxidative markers and pathological signs in the spinal cord of MitoQ-treated animals were markedly reduced and neuromuscular junctions were recovered associated with a significant increase in hindlimb strength. Finally, MitoQ treatment significantly prolonged the life span of SOD1G93A mice. Our results support a role for mitochondrial nitroxidative damage and dysfunction in the pathogenesis of ALS and suggest that mitochondria-targeted antioxidants may be of pharmacological use for ALS treatment.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and accumulating evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. The aim of this work was to investigate the effect of treatment with hydrogen molecule on the development of disease in mutant SOD1 G93A transgenic mouse model of ALS. Treatment of mutant SOD1 G93A mice with hydrogen-rich saline (HRS, i.p.) significantly delayed disease onset and prolonged survival, and attenuated loss of motor neurons and suppressed microglial and glial activation. Treatment of mutant SOD1 G93A mice with HRS inhibited the release of mitochondrial apoptogenic factors and the subsequent activation of downstream caspase-3. Furthermore, treatment of mutant SOD1 G93A mice with HRS reduced levels of protein carbonyl and 3-nitrotyrosine, and suppressed formation of reactive oxygen species (ROS), peroxynitrite, and malondialdehyde. Treatment of mutant SOD1 G93A mice with HRS preserved mitochondrial function, marked by restored activities of Complex I and IV, reduced mitochondrial ROS formation and enhanced mitochondrial adenosine triphosphate synthesis. In conclusion, hydrogen molecule may be neuroprotective against ALS, possibly through abating oxidative and nitrosative stress and preserving mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号