首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

2.
All possible isomers of N-β-d-glucopyranosyl aryl-substituted oxadiazolecarboxamides were synthesised. O-Peracetylated N-cyanocarbonyl-β-d-glucopyranosylamine was transformed into the corresponding N-glucosyl tetrazole-5-carboxamide, which upon acylation gave N-glucosyl 5-aryl-1,3,4-oxadiazole-2-carboxamides. The nitrile group of the N-cyanocarbonyl derivative was converted to amidoxime which was ring closed by acylation to N-glucosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides. A one-pot reaction of protected β-d-glucopyranosylamine with oxalyl chloride and then with arenecarboxamidoximes furnished N-glucosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides. Removal of the O-acetyl protecting groups by the Zemplén method produced test compounds which were evaluated as inhibitors of glycogen phosphorylase. Best inhibitors of these series were N-(β-d-glucopyranosyl) 5-(naphth-1-yl)-1,2,4-oxadiazol-3-carboxamide (Ki = 30 μM), N-(β-d-glucopyranosyl) 5-(naphth-2-yl)-1,3,4-oxadiazol-2-carboxamide (Ki = 33 μM), and N-(β-d-glucopyranosyl) 3-phenyl-1,2,4-oxadiazol-5-carboxamide (Ki = 104 μM). ADMET property predictions revealed these compounds to have promising oral drug-like properties without any toxicity.  相似文献   

3.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

4.
Oroidin (1), (E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dibromo-1H-pyrrole-2-carboxamide, is a pyrrole alkaloid isolated from the marine sponge Agelas oroides. Routine screening in a panel of twelve cancer cell lines revealed 1 to be poorly cytotoxic with the 50% growth inhibition concentration (GI50) of 42 μM in MCF-7 (breast) cells and 24 μM in A2780 (ovarian) cells and >50 μM in all other cell lines tested. The development of eight focused libraries comprising thirty compounds total identified N-(biphenyl-4-ylmethyl)-1H-pyrrole-2-carboxamide (4l), N-benzyl-4,5-dibromo-1H-pyrrole-2-carboxamide (5a) and N-(biphenyl-4-ylmethyl)-4,5-dibromo-1H-pyrrole-2-carboxamide (5l) as potent inhibitors of cell growth in our panel of cell lines. Of these compounds GI50 values of <5 μM were observed with 4l against HT29 (colon) and SW480 (colon); 5a against HT29; and 5l against HT29, SW480, MCF-7, A431 (skin), Du145 (prostate), BE2-C (neuroblastoma) and MIA (pancreas) cell lines. As a cancer class, colon cancer appears to be more sensitive to the oroidin series of compounds, with analogue 5l being the most active.  相似文献   

5.
5,6,7,8-Tetrahydro-4H-cyclohepta[d]isoxazole derivatives were synthesized and evaluated as a novel class of inhibitors for α-melanocyte-stimulating hormone (α-MSH) induced melanogenesis in a mouse melanoma B16F10 cell line. Compound 8e (IC50 = 0.67 μM), 8h (IC50 = 1.01 μM) and 9b (IC50 = 0.99 μM) exhibited a potent inhibitory activity approximately 85- to 126-fold greater than kojic acid, a well-known potent inhibitor. A biochemical study indicates that the activity of this series should be displayed via down-regulation of the expression of tyrosinase.  相似文献   

6.
A set of 5,6-fused bicyclic heteroaromatic scaffolds were investigated for their in vitro anti-tubercular activity versus replicating and non-replicating strains of Mycobacterium tuberculosis (Mtb) in an attempt to find an alternative scaffold to the imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidines that were previously shown to have potent activity against replicating and drug resistant Mtb. The five new bicyclic heteroaromatic scaffolds explored in this study include a 2,6-dimethylimidazo[1,2-b]pyridazine-3-carboxamide (7), a 2,6-dimethyl-1H-indole-3-carboxamide (8), a 6-methyl-1H-indazole-3-carboxamide (9), a 7-methyl-[1,2,4]triazolo[4,3-a]pyridine-3-carboxamide (10), and a 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxamide (11). Additionally, imidazo[1,2-a]pyridines isomers (2 and 12) and a homologous imidazo[1,2-a]pyrimidine isomer (6) were prepared and compared. Compounds 2 and 6 were found to be the most potent against H37Rv Mtb (MIC’s of 0.1 μM and 1.3 μM) and were inactive (MIC >128 μM) against Staphylococcus aureus, Escherichia coli and Candida albicans. Against other non-tubercular mycobacteria strains, compounds 2 and 6 had activity against Mycobacterium avium (16 and 122 μM, respectively), Mycobacterium kansasii (4 and 19 μM, respectively), Mycobacterium bovis BCG (1 and 8 μM, respectively) while all the other scaffolds were inactive (>128 μM).  相似文献   

7.
Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC50 = 400 nM and 270 nM, respectively) and selective (CC50 > 20 μM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.  相似文献   

8.
Cathepsins have emerged as potential drug targets for melanoma therapy and engrossed attention of researchers for development and evaluation of cysteine cathepsin inhibitors as cancer therapeutics. In this direction, we have designed, synthesized, and assayed in vitro a small library of 30 low molecular weight functionalized analogs of chalcone hydrazones for evaluating structure–activity relationship aspects and inhibitory potency against cathepsin B and H. The maximum inhibitory effect was exerted by chalcone hydrazones, which are open chain analogues followed by their cyclized derivatives, pyrazolines and pyrazoles. All the synthesized compounds were established as reversible inhibitors of these enzymes. Cathepsin B was selectively inhibited by the compounds in each series. Compounds 1d, 2d and 4d were recognized as most potent inhibitors of cathepsin B in this study with Ki values of 0.042 μM, 0.053 μM and 0.131 μM whereas 1b (Ki = 1.111 μM), 2b (Ki = 1.174 μM) and 4b (Ki = 1.562 μM) inhibited cathepsin H activity effectively. And, preeminent cathepsin B inhibitors were –NO2 functionalized however, –Cl substituted moieties were the most persuasive inhibitors for cathepsin H among all the designed compounds. Molecular docking studies performed using iGemdock provided valuable insights.  相似文献   

9.
A series of 2-(1-aryl-1H-imidazol-2-ylthio)acetamide [imidazole thioacetanilide (ITA)] derivatives were synthesized and evaluated as potent inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were 4a5 (EC50 = 0.18 μM), and 4a2 (EC50 = 0.20 μM), which were more effective than the lead compound L1 (EC50 = 2.053 μM) and the reference drugs nevirapine and delavirdine. The preliminary structure–activity relationship (SAR) of the newly synthesized congeners is discussed.  相似文献   

10.
The series of imidazoldine-2-thiones 2 and tetrahydropyrimidine-2-thiones 3 were discovered as inhibitor of α-MSH-induced melanin production in melanoma B16 cells. The primary bioassay showed that 1-(4-ethylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3e (>100% inhibition at 10 μM, IC50 = 1.2 μM) and 1-(4-tert-butylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3f (>100% inhibition at 10 μM, IC50 = 0.76 μM) exhibited potent inhibitory effect against α-MSH-induced melanin production. Compounds 3 inhibit the biosynthesis of tyrosinase without affecting its catalytic activity in melanogenesis.  相似文献   

11.
Twenty six 2,6-disubstituted 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide derivatives were designed by molecular hybridization approach using and synthesized from piperidin-4-one by five step synthesis. Compounds were evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 6-(4-nitrophenylsulfonyl)-2-(5-nitrothiophene-2-carboxamido)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (11) was found to be the most active compound with IC50 of 5.87 ± 0.12 μM against MTB PS, inhibited MTB with MIC of 9.28 μM and it was non-cytotoxic at 50 μM. The binding affinity of the most potent inhibitor 11 was further confirmed biophysically through differential scanning fluorimetry.  相似文献   

12.
Optimization studies using an HIV RNase H active site inhibitor containing a 1-hydroxy-1,8-naphthyridin-2(1H)-one core identified 4-position substituents that provided several potent and selective inhibitors. The best compound was potent and selective in biochemical assays (IC50 = 0.045 μM, HIV RT RNase H; 13 μM, HIV RT-polymerase; 24 μM, HIV integrase) and showed antiviral efficacy in a single-cycle viral replication assay in P4-2 cells (IC50 = 0.19 μM) with a modest window with respect to cytotoxicity (CC50 = 3.3 μM).  相似文献   

13.
In this study, a series of 22 ring-substituted 1-hydroxynaphthalene-2-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium marinum, Mycobacterium kansasii and Mycobacterium smegmatis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Most of tested compounds showed the antimycobacterial activity against the three strains comparable or higher than the standard isoniazid. N-(3-Fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC = 28.4 μmol/L) against M. marinum, N-(4-fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC = 14.2 μmol/L) against M. kansasii, and N-(4-bromophenyl)-1-hydroxynaphthalene-2-carboxamide expressed the highest biological activity (MIC = 46.7 μmol/L) against M. smegmatis. This compound and 1-hydroxy-N-(3-methylphenyl)naphthalene-2-carboxamide were the most active compounds against all three tested strains. The PET inhibition expressed by IC50 value of the most active compound 1-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-2-carboxamide was 5.3 μmol/L. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, structure–activity relationships are discussed.  相似文献   

14.
Efforts to identify treatments for chronic diabetic complications have resulted in the discovery of a novel series of highly potent and selective [3-(4,5,7-trifluoro-benzothiazol-2-ylmethyl)-pyrrolo[2,3-b]pyridin-1-yl]acetic acid aldose reductase inhibitors. The lead candidate, [6-methyl-3-(4,5,7-trifluoro-benzothiazol-2-ylmethyl)-pyrrolo[2,3-b]pyridin-1-yl]acetic acid example 16, inhibits aldose reductase with an IC50 of 8 nM, while being inactive against aldehyde reductase (IC50 > 100 μM), a related enzyme involved in the detoxification of reactive aldehydes.  相似文献   

15.
In order to identify potential calpain and cathepsin inhibitors we prepared 12 dihydroxychalcone analogues and tested their ability to inhibit μ-calpain, m-calpain, cathepsins B and L. In the calpain inhibition test, compound 10 exhibited the most active inhibitory activity against m-calpain with an IC50 value of 25.25 ± 0.901 μM. With respect to inhibition of cathepsins B and L, compound 13 exhibited the most potent inhibitory activity on cathepsin L and moderate inhibitory activity on cathepsin B with IC50 values of 2.80 ± 0.100 and 11.47 ± 0.087 μM, respectively. Our results suggest the possibility of developing dual calpain and cathepsin inhibitors by properly modulating structures and/or combining the essential aspects of the functional group effective for specific calpain and cathepsin inhibition.  相似文献   

16.
A series of maslinic acid derivatives have been synthesized by introducing various fused heterocyclic rings at C-2 and C-3 positions. Their inhibitory effects on PTP1B, TCPTP and related PTPs are evaluated. Most of the compounds exhibited a dramatic increase in inhibitory potency and selectivity, the two most potent PTP1B inhibitors 20 (IC50 = 0.61 μM) and 29 (IC50 = 0.64 μM) showed about 10-fold more potent than lead compound maslinic acid. More importantly, 29 possesses the best selectivity of 6.9-fold for PTP1B over TCPTP.  相似文献   

17.
Two series of novel 2,3-dihydrobenzo[b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives C1C15 and D1D15 have been synthesized and evaluated for their B-Raf inhibitory and anti-proliferation activities. Compound C14 ((3-(4-bromophenyl)-5-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methanone) showed the most potent biological activity against B-RafV600E (IC50 = 0.11 μM) and WM266.4 human melanoma cell line (GI50 = 0.58 μM), being comparable with the positive control Erlotinib and more potent than our previous best compound, while D10 ((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)(5-(3-fluorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)methanone) performed the best in the D series (IC50 = 1.70 μM; GI50 = 1.45 μM). The docking simulation was performed to analyze the probable binding models and poses and the QSAR model was built for reasonable design of B-Raf inhibitors in future. The introduction of 2,3-dihydrobenzo[b][1,4]dioxin structure reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.  相似文献   

18.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

19.
Herein we report a series of novel chloramphenicol amine derivatives as aminopeptidase N (APN)/CD13 inhibitors. All compounds were synthesized starting from commercially available (1S,2S)-2-amino-1-(4-nitrophenyl) propane-1,3-diol. The preliminary biological screening showed that some compounds exhibited potent inhibitory activity against APN. It should be noted that one compound, 13b (IC50 = 7.1 μM), possess similar APN inhibitory activity compared with Bestatin (IC50 = 3.0 μM).  相似文献   

20.
A combinatorial series of novel quinazolin-4(3H)-ones were synthesised and their structures were established based on spectroscopic data (IR, NMR, EI-MS, and FAB-MS). The compounds were tested for inhibition of the zinc metalloproteinase thermolysin (TLN) utilizing a chemical array-based approach. Some of the compounds were found to inhibit TLN, with IC50 values ranging from 0.0115 μM (compound 3) to 122,637 μM (compound 29). Compound 3 [3-phenyl-2-(trifluoromethyl) quinazolin-4(3H)-one] (IC50 = 0.0115 μM) and compound 35 [3-(isopropylideneamino)-2,2-dimethyl-2,3-dihydroquinazolin-4 (1H)-one] (IC50 = 0.2477 μM) were found to be the most potent inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号