首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viscoelastic properties of the cream formulations were tested by 2 methods (ie, increased stress and increased frequency tests). The rheology experiments indicate that the formulations are stable; they show resistance to external forces, as their elastic properties are sustained whether or not the magnitude or frequency of external forces are increased. The results show that rheological properties of the formulations are affected by the proportion of the oil phase and the amount of carbomer in the aqueous phase, but the effect of monocaprin is modest. Increasing carbomer amount increases viscosity and elasticity. Increasing the oil volume fraction increased the structural stability of the creams. The formulation containing monocaprin, which yielded the most viscoelastic structure was a cream containing 10% oil phase and 0.5% carbomer (Formulation 9).  相似文献   

2.
For the first time it is clearly exhibited that synovial fluid (SF) is thixotropic. Although no hysteresis loops were observed for SF, not even at high shear rates, thixotropy may be exhibited by measuring the rate of recovery after extensive shearing. The rebuilding of the structure in a small-amplitude oscillatory state following the high-shear-rate state reveals the thixotropic behaviour. Five different viscoelastic parameters for various synovial fluids (SF) were obtained using oscillatory rheometry. It was also shown that for SF in the low frequency range, corresponding to a knee joint almost at rest, the shear loss modulus G" is greater than the shear storage modulus G', since the system is allowed to dissipate energy at rest. However, with movement, G' increases and eventually becomes greater than G" at a characteristic frequency above which the system has insufficient time to dissipate energy and hence responds as an elastic body. This functional behaviour, characteristic for normal SF, broke down in the SF of rheumatoid arthritis. It was also absent in the SF of knee joints with meniscus lesions and ligament defects.  相似文献   

3.
This study describes the formulation and characterization of binary interactive polymeric systems, designed as platforms for improved drug delivery to mucosal sites. Binary interactive systems were manufactured containing hydroxyethylcellulose (HEC; 1-5% w/w) and polycarbophil (PC; 1-5% w/w) at pH 7, and their rheological (flow and dynamic), mechanical, and mucoadhesive properties were characterized, both before and after dilution with phosphate buffered saline (designed to mimic dilution by biological fluids). Physical interactions between HEC and PC were confirmed by the observed rheological synergy. Within the binary interactive systems increasing polymer concentration increased the storage modulus (G'), loss modulus (G' '), dynamic viscosity (eta'), hardness, compressibility, consistency, and mucoadhesion yet decreased the loss tangent. This was attributed to enhanced entanglements and interactions between adjacent polymer chains. Dilution with PBS altered the above properties; however, the binary interactive systems, particularly those containing higher concentrations of HEC, still exhibited predominantly elastic properties (high G', low tan delta). In light of this, it is suggested that the rheological and mucoadhesive properties of binary interactive systems composed of HEC (5% w/w) and PC (1-3% w/w) offered particular promise as platforms for topical mucosal drug delivery systems.  相似文献   

4.
F Ziemann  J Rdler    E Sackmann 《Biophysical journal》1994,66(6):2210-2216
A magnetically driven bead micro-rheometer for local quantitative measurements of the viscoelastic moduli in soft macromolecular networks such as an entangled F-actin solution is described. The viscoelastic response of paramagnetic latex beads to external magnetic forces is analyzed by optical particle tracking and fast image processing. Several modes of operation are possible, including analysis of bead motion after pulse-like or oscillatory excitations, or after application of a constant force. The frequency dependencies of the storage modulus, G'(omega), and the loss modulus, G'(omega), were measured for frequencies from 10(-1) Hz to 5 Hz. For low actin concentrations (mesh sizes epsilon > 0.1 micron) we found that both G'(omega) and G'(omega) scale with omega 1/2. This scaling law and the absolute values of G' and G' agree with conventional rheological measurements, demonstrating that the magnetic bead micro-rheometer allows quantitative measurements of the viscoelastic moduli. Local variations of the viscoelastic moduli (and thus of the network density and mesh size) can be probed in several ways: 1) by measurement of G' and G' at different sites within the network; 2) by the simultaneous analysis of several embedded beads; and 3) by evaluation of the bead trajectories over macroscopic distances. The latter mode yields absolute values and local fluctuations of the apparent viscosity eta(x) of the network.  相似文献   

5.
The effect of increasing water composition on the rheological and microstructural behavior of a ternary cellulose acetate (CA)/N,N-dimethylacetamide (DMA)/water system is examined. Addition of water to the CA/DMA system results in enhanced steady shear viscosity and dynamic viscoelastic properties and ultimately to phase-separated gel formation. The changes in dynamic rheological behavior of the system during gelation correlate well with the combined solubility parameter (delta) and, in particular, the Hansen hydrogen-bonding solubility parameter index (delta(h)) of the solvent system, suggesting hydrogen-bonding interactions may be the major route initiating the sol-gel process. For all gels studied, the elastic modulus and the critical stress to yield shifts to higher values with increasing CA concentration and/or water content. In addition, the elastic modulus exhibits a power-law behavior with water content, with the same power-law exponent observed for gels containing different CA concentrations. Addition of water leads to formation of a denser gel network, as evidenced from direct visualization of the gel microstructure through confocal microscopy.  相似文献   

6.
Guo Y  Zhou J  Zhang L 《Biomacromolecules》2011,12(5):1927-1934
Dynamic viscoelastic properties of cellulose carbamate (CC) dissolved in NaOH aqueous solution were systematically studied for the first time. CC was microwave-assisted synthesized from the mixture of cellulose and urea and then dissolved in 7 wt % NaOH aqueous solution precooled to -7 °C. The obtained CC solution is transparent and has good liquidity. To clarify the rheological behavior of the solution, the CC solutions were investigated by dynamic viscoelastic measurements. The shear storage modulus (G') and loss modulus (G') as a function of the angular frequency (ω), concentration (c), nitrogen content (N %), viscosity-average molecular weight (M(η)), temperature (T), and time (t) were analyzed and discussed in detail. The sol-gel transition temperature of CC (M(η) = 7.78 × 10(4)) solution decreased from 36.5 to 31.3 °C with an increase of the concentration from 3.0 to 4.3 wt % and decreased from 35.7 to 27.5 °C with an increase of the nitrogen content from 1.718 to 5.878%. The gelation temperature of a 3.8 wt % CC solution dropped from 38.2 to 34.4 °C with the M(η) of CC increased from 6.35 × 10(4) to 9.56 × 10(4). The gelation time of the CC solution was relatively short at 30 °C, but the solution was stable for a long time at about 15 °C. Moreover, the gels already formed at elevated temperature were irreversible; that is, after cooling to a lower temperature including the dissolution temperature (-7 °C), they could not be dissolved to become liquid.  相似文献   

7.
Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G(*)(omega)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1-100 Hz) and at different loading forces (0.1-0.9 nN) with atomic force microscopy. G(*)(omega) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G'(omega) increased with frequency following a power law with exponent approximately 0.2. The loss modulus G"(omega) was approximately 2/3 lower and increased similarly to G'(omega) up to approximately 10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G'(omega) and G"(omega). G(*)(omega) conformed to the power-law model with a structural damping coefficient of approximately 0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture.  相似文献   

8.
L M Soby  A M Jamieson  J Blackwell  N Jentoft 《Biopolymers》1990,29(10-11):1359-1366
The linear viscoelastic and rheological properties of high molecular weight ovine submaxillary mucin (OSM) solution have been investigated in terms of the Newtonian steady-flow viscosity [eta(gamma)], the complex oscillatory viscosity [eta*(omega)], and the storage and loss shear moduli [G'(omega) and G"(omega)]. It was observed that tau(gamma), eta*(omega), and G'(omega) are always higher when OSM is dissolved in 0.1M NaCl than when at the same concentration in 6M GdnHCl. This is consistent with previous observations that submaxillary mucins self-associate in 0.1M NaCl to form large aggregates, which are disrupted in 6M GdnHCl. As the OSM concentration increases, the appearance of a plateau shear modulus indicates the formation of a gel network in both solvents. The results suggest gelation involves specific intermolecular interactions, perhaps due to hydrophobic forces between interdigitated oligosaccharide side chains. The viscoelastic behavior of OSM solution at high concentration is thus similar to that reported in the literature for porcine gastric mucin (PGM). However, the OSM gels are mechanically weaker, having moduli that are an order of magnitude lower than those for PGM gels of comparable concentration. The oligosaccharide side chains of OSM consist of only 1-2 sugar units compared to 10-15 for PGM, but it appears that this is sufficient to allow for intermolecular interaction and the formation of weak gels.  相似文献   

9.
Psoriasis is a chronic, autoimmune skin disease affecting approximately 2% of the world's population. Clobetasol propionate which is a superpotent topical corticosteroid is widely used for topical treatment of psoriasis. Conventional dosage forms like creams and ointments are commonly prefered for the therapy. The purpose of this study was to develop a new topical delivery system in order to provide the prolonged release of clobetasol propionate and to reduce systemic absorption and side effects of the drug. Clobetasol propionate loaded-poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by oil-in-water emulsion–solvent evaporation technique. Particle size analysis, morphological characterization, DSC and XRD analyses and in vitro drug release studies were performed on the microparticle formulations. Emulgel formulations were prepared as an alternative for topical delivery of clobetasol propionate. In vitro drug release studies were carried out from the emulgel formulations containing pure drug and drug-loaded microspheres. In addition, the same studies were performed to determine the drug release from the commercial cream product of clobetasol propionate. The release of clobetasol propionate from the emulgel formulations was significantly higher than the commercial product. In addition, the encapsulation of clobetasol propionate in the PLGA microspheres significantly delayed the drug release from the emulgel formulation. As a result, the decrease in the side effects of clobetasol propionate by the formulation containing PLGA microspheres is expected.  相似文献   

10.
The rheological behavior of suspensions containing vacuum freeze dried and spray dried starch nanoparticles was investigated to explore the effect of these two drying methods in producing starch nanoparticles which were synthesized using high pressure homogenization and mini-emulsion cross-linking technique. Suspensions containing 10% (w/w) spray dried and vacuum freeze dried nanoparticles were prepared. The continuous shear viscosity tests, temperature sweep tests, the frequency sweep and creep-recovery tests were carried out, respectively. The suspensions containing vacuum freeze dried nanoparticles showed higher apparent viscosity within shear rate range (0.1-100s(-1)) and temperature range (25-90°C). The suspensions containing vacuum freeze dried nanoparticles were found to have more shear thinning and less thixotropic behavior compared to those containing spray dried nanoparticles. In addition, the suspensions containing vacuum freeze dried particles had stronger elastic structure. However, the suspensions containing spray dried nanoparticles had more stiffness and greater tendency to recover from the deformation.  相似文献   

11.
The aim of this study was to develop spheronized microparticulates as a drug delivery system using the 1-step closed rotor disk fluid-bed technology, and to scale up the batch spheronization process. Ibuprofen was used as the model drug and microcrystalline cellulose/sodium carboxymethyl cellulose hydrocolloid (Avicel(R) RC-581 or CL-611) was present as the diluent/binder. The mixture, in 1:1 ratio, was blended with and without 1% sodium lauryl sulfate (SLS) and spheronized with the rotor disk insert, using either water or hydroxypropylmethyl cellulose (HPMC) as binder. Fluid-bed machines (Vector/Freund Flo-Coater model) FLM-1 (with 9-inch rotor insert for 0.75 kg) and FLM-15 (with a 12-inch and 19-inch rotor inserts for 1 kg and 5, 10 kg, respectively) were used. The critical process parameters included inlet air temperature, rotor disk speed and configuration, air flow, and rate of binder application. The 1 kg batch containing SLS that was made with 12-inch smooth stainless steel or waffle teflon plates rotating at 500 rpm had desirable characteristics. The sphericity values were 0.88 and 0.91, with percent yield of 85.4 and 91.2 and drug content values of 94.47% and 91.44%, respectively. The spheroids showed good flow properties with respective rapid drug release (Q20 = 83.27 and 91.75). No difference was seen in the Avicel RC-581 and CL-611. Based on the 1 kg data, Avicel RC-581 and smooth stainless steel and waffle teflon plates (12 inch and 19 inch), the batch was scaled up to 5 and 10 kg. The scale-up parameters included rotor speed (124 -300 rpm) and spray rate (90-140 g/min). The scale-up batches had similar flow characteristics, release rate, and size distribution. The geometric mean diameter increased as batch size increased, and slightly bigger spheroids were obtained using the waffle teflon plate. Ibuprofen spheres with very good physical characteristics were developed using the rotor disk fluid-bed technology, a 1-step closed process that did not require additional unit processes.  相似文献   

12.
This paper reports the rheological behavior of chitosan solutions that have been cross-linked with different amounts of genipin, at body temperature and physiological pH. The effect of the cross-linker loading on the rheological properties of hydrogels has been evaluated. The oscillatory time sweep method was used to monitor the dynamic viscoelastic parameters during in situ (i.e., in the rheometer) gelation experiments, enabling the determination of the gelation time. The stress and frequency sweeps were employed to measure G' of the cured hydrogels. It was found that the solutions of chitosan cross-linked with genipin, under physiological conditions, could form relatively strong elastic gels when compared to those of pure chitosan. Moreover, the gelation time obtained from the crossover of G' and G' was in excellent agreement with the value obtained from the Winter-Chambon criterion. A significant reduction on this parameter was achieved even at low genipin concentrations. This behavior suggests that these formulations are able to be produced in situ and thus constitute promising matrices for cells and bioactive molecule encapsulations.  相似文献   

13.
Gelation behaviour of konjac glucomannan with different molecular weights   总被引:8,自引:0,他引:8  
The deacetylation and gelation of konjac glucomannan (KGM) following alkali addition was investigated by Fourier transform infrared, while the rheological properties of KGM with different molecular weights were studied by dynamic viscoelastic measurements in shear mode and penetration force tests. It was found that gelation occurred after significant deacetylation had taken place. Rheometrical studies revealed that KGM with different molecular weights exhibited different gelation characteristics in small amplitude oscillatory shear flow. For the samples of fractionated KGM with lower molecular weights, a decrease in both the storage shear modulus (G') and loss shear modulus (G") was observed during gelation at temperatures above 75 degrees C. It is suggested that the decrease results from the wall slip between sample and measuring geometry owing to a rapid gelation process with syneresis and/or disentanglement of molecular chains adsorbed on the surface of parallel plates from those located in the bulk. Penetration force tests were employed to confirm the occurrence of slippage and thereby no decreases in rigidity of samples were observed during gelation. For the native KGM samples decreases in G' and G" during gelation were not observed, and it is suggested that this is due to the effect of the higher molecular weight and increased solution viscosity of these samples on the gelation kinetics.  相似文献   

14.
Dynamic viscoelastic properties of collagen solutions with concentrations of 0.5-1.5% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 32.5 degrees C. All collagen solutions showed a shear-thinning flow behavior. The complex viscosity exhibited an exponential increase and the loss tangent decreased with the increase of collagen concentration (C(COL)) when the C(COL)> or =0.75%. Both storage modulus (G') and loss modulus (G') increased with the increase of frequency and concentration, but decreased with the increase of temperature and behaved without regularity at 32.5 degrees C. The relaxation times decreased with the increase of temperature for 1.0% collagen solution. According to a three-zone model, dynamic modulus of collagen solutions showed terminal-zone and plateau-zone behavior when C(COL) was no more than 1.25% or the stated temperature was no more than 30 degrees C. The concentrated solution (1.5%) behaved being entirely in plateau zone. An application of the time-temperature superposition (TTS) allowed the construction of master curve and an Arrhenius-type TTS principle was used to yield the activation energy of 161.4 kJ mol(-1).  相似文献   

15.
We measured the time course and heterogeneity of responses to contractile and relaxing agonists in individual human airway smooth muscle (HASM) cells in culture. To this end, we developed a microrheometer based on magnetic twisting cytometry adapted with a novel optical detection system. Ferromagnetic beads (4.5 microm) coated with Arg-Gly-Asp peptide were bound to integrins on the cell surface. The beads were twisted in a sinusoidally varying magnetic field at 0.75 Hz. Oscillatory bead displacements were recorded using a phase-synchronized video camera. The storage modulus (cell stiffness; G'), loss modulus (friction; G"), and hysteresivity (eta; ratio of G" to G') could be determined with a time resolution of 1.3 s. Within 5 s after addition of histamine (100 microM), G' increased by 2.2-fold, G" increased by 3.0-fold, and eta increased transiently from 0.27 to 0.34. By 20 s, eta decreased to 0.25, whereas G' and G" remained above baseline. Comparable results were obtained with bradykinin (1 microM). These changes in G', G", and eta measured in cells were similar to but smaller than those reported for intact muscle strips. When we ablated baseline tone by adding the relaxing agonist dibutyryl cAMP (1 mM), G' decreased within 5 min by 3.3-fold. With relaxing and contracting agonists, G' could be manipulated through a contractile range of 7.3-fold. Cell populations exhibited a log-normal distribution of baseline stiffness (geometric SD = 2.8) and a heterogeneous response to both contractile and relaxing agonists, partly attributable to variability of baseline tone between cells. The total contractile range of the cells (from maximally relaxed to maximally stimulated), however, was independent of baseline stiffness. We conclude that HASM cells in culture exhibit a clear, although heterogeneous, response to contractile and relaxing agonists and express the essential mechanical features characteristic of the contractile response observed at the tissue level.  相似文献   

16.
The kinetics of photolysis of ascorbic acid in cream formulations on UV irradiation has been studied using a specific spectrophotometric method with a reproducibility of ±5%. The apparent first-order rate constants (k obs) for the photolysis of ascorbic acid in creams have been determined. The photoproducts formed in the cream formulations include dehydroascorbic acid and 2,3-diketogulonic acid. The photolysis of ascorbic acid appears to be affected by the concentration of active ingredient, pH, and viscosity of the medium and formulation characteristics. The study indicates that the ionized state and redox potentials of ascorbic acid are important factors in the photostability of the vitamin in cream formulations. The viscosity of the humectant present in the creams appears to influence the photostability of ascorbic acid. The results show that the physical stability of the creams is an important factor in the stabilization of the vitamin. In the cream formulations stored in the dark, ascorbic acid undergoes aerobic oxidation and the degradation is affected by similar factors as indicated in the photolysis reactions. The rate of oxidative degradation in the dark is about seventy times slower than that observed in the presence of light.  相似文献   

17.
Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.  相似文献   

18.
19.
This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity.  相似文献   

20.
The occurrence of molecular motions in addition to those of the glass-transition region (alpha mechanism) were investigated in chitosan and a branched derivative substituted with alkyl chains having eight carbon atoms. Once hydrophobic interactions of the alkyl groups in aqueous solution were demonstrated, polymers were mixed with glucose syrup at high levels of solids. The real (G') and imaginary (G") components of the complex dynamic modulus in high-solid mixtures were measured between 0.1 and 100 rad s(-1) in the temperature range from -55 to 50 degrees C. The method of reduced variables gave superposed curves of G' and G", which unveiled an anomaly in the dispersion of the alkylated derivative both in terms of higher modulus values and dominant elastic component of the polymeric network, as compared with the glass-transition region of chitosan. It was proposed that the new mechanical feature was due to beta mechanism, and master curves of viscoelastic functions and relaxation processes were constructed to rationalize it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号