首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Villalba  J. M.  Navarro  F.  Roldán  J. M.  González-Reyes  J. A.  Navas  P. 《Protoplasma》1994,178(3-4):87-96
Summary Expression of various sugar residues on the plasma membrane of frog (Rana perezi) epidermal cells at different stages of differentiation has been monitored with the use of a battery of HRP-conjugated lectins. In paraffin-embedded tissue, mannose residues (stained by Concanavalin A) were detected at the keratinocyte cell surface in all epidermal strata. However,Lens culinaris agglutinin (LCA), also specific for mannose, specifically stained the plasma membrane of cells from the stratum germinativum. Expression of N-acetyl-glucosamine (GlcNAc), labelled with wheat germ agglutinin (WGA), was maximum at the cell surface of basal cells and progressively decreased through the stratum spinosum. Galactose (Gal) and N-acetyl-galactosamine (GalNAc) residues, labelled withGriffonia simplicifolia I (GS I) andGlycine max (SBA) agglutinins, respectively, were expressed according to the degree of differentiation in amphibian epidermal cells. Sialic acid-containing glycoproteins, labelled withLimax flavus agglutinin (LFA), were found in the outermost plasma membrane of the replacement cell layer and stratum corneum. Glycoproteins responsible for the observed lectin-binding patterns have been identified by staining on nitrocellulose filters after electrophoresis of solubilized plasma membrane fractions and Western blotting. Changes at the level of glycosylation of plasma membrane glycoproteins as epidermal cells differentiate are discussed on the basis of a progressive addition of Gal residues. Integral membrane proteins have been solubilized with the non-denaturing detergent CHAPS and glycoproteins containing terminal Gal residues, that are expressed according to the degree of differentiation in frog epidermis, have been partially purified by affinity chromatography on a GS I-Sepharose 4 B column. The purified fraction was composed by four acidic glycoproteins with isoelectric points between 4.6 and 5.2 and, in SDS-gels gave five major protein bands with approximate molecular weights of 148, 140, 102, 60, and 52 kDa in SDS-gels. The 102 and 52 kDa bands correspond to the a and subunits of amphibian epidermal Na+,K+-ATPase as demonstrated by specific staining with a polyclonal antibody against the catalytic subunit of pig kidney proton pump and staining with lectins GS I, GS II, and WGA. Possible relationships between higher molecular weight proteins and the constituents of intramembranous particles from the outermost plasma membranes of the replacement cell layer and the stratum corneum are also discussed.Abbreviations BSA bovine serum albumin - CHAPS (3-[(cholamidopropyl) dimethyl-ammonio] 1-propanesulfonate) - Con A Canavalia ensiformis agglutinin - DTT dithiothreitol - Gal galactose - GalNAc N-acetyl-D-galactosamine - GlcNAc N-acetyl-D-glucosamine - GS I Griffonia simplicifolia agglutinin I - GS II Griffonia simplicifolia agglutinin II - HRP horseradish peroxidase - LFA Limax flavus agglutinin - LCA Lens culinaris agglutinin - NDPAGIF non-denaturing polyacrylamide gel isoelectric focusing - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase - PBS phosphate buffered saline - PMSF phenyl methyl sulphonyl fluoride - RCL replacement cell layer - SBA soybean agglutinin (Glycine max) - SB stratum basal - SDS sodium dodecyl sulphate - SG stratum granulosum - SS stratum spinosum - UEA I Ulex europaeus agglutinin I - WGA wheat germ (Triticum vulgaris) agglutinin  相似文献   

2.
Summary In asexual reproduction of the water mold,Saprolegnia ferax, four distinct and sequentially produced spores are involved in dispersal, two of which are motile and two of which are nonmotile. Composition of cell surface glycoproteins may be important in dispersal strategies for each of these stages. Binding patterns of fluorescently labelled lectins were investigated to identify differences in glycoproteins of asexually produced dispersal stages. The pattern of lectin binding to zoospores was diverse. FITC-Con A bound to surfaces of zoospores and membranes of the water expulsion vacuole system, indicating the prescence of mannosyl and glucosyl residues. In zoospores incubated for more than 30 min in FITC-WGA and FITC-GS II. which bind N-acetyl glucosamine, fluorescence was sometimes localized in peripheral, intracellular patches. In shorter incubations, secondary zoospores bound these lectins along the groove region where K-bodies were located. Surfaces of cystospores typically bound FITC-WGA, but not FITC-GS II. FITC-GS II, however, bound to empty cystospore walls, probably because reactive sugars were available at the inner surface of the wall. Germ tubes emerging from cystospores bound labelled WGA and GS II, but not Con A. The same lectin binding pattern was found along discharge papilla of primary cystospores, indicating that modifications in cystospore walls associated with direct germination and zoospore discharge were similar. Thus, glycoproteins involved in early establishment of the hyphal system differ from those forming the cell surface of cystospores. Differences in the binding pattern of lectins to zoospores and cystospores highlight differences between cell surface carbohydrates of motile and nonmotile asexual stages.Abbreviations BPA lectin fromBauhinia purpurea - C1 primary cystospore - C2 secondary cystospore - Con A concanavalin A, lectin fromCanavalia ensiformis - DBA lectin fromDolichos biflorus - DIC Nomarski differential interference contrast optics - DS dilute salts - FITC fluorescein isothiocyanate - FUC fucose - Gal galactose - GalNAc N-acetyl galactosamine - Glc glucose - GlcNAc N-acetyl glucosamine - GS I Griffonia simplicifolia lectin I - GS II G. simplicifolia lectin II - Man mannose - MPA lectin fromMaclura pomifera - PC phase contrast optics - PNA lectin fromArachis hypogaea - SBA soybean agglutinin, lectin fromGlycine max - UEA-1 lectin fromUlex europaeus - WGA wheat germ agglutinin fromTriticum vulgare - WV water expulsion vacuole  相似文献   

3.
Summary Lectins ofBauhinia purpurea (BPA),Canavalin ensiformis (Con A),Griffonia simplicifolia I (GS I),Griffonia simplicifolia II (GS II),Maclura pomifera (MPA),Arachis hypogaea (PNA),Glycine max (SBA),Ulex europaeus I (UEA I) andTriticum vulgaris (WGA) were used to evaluate cell surface carbohydrates in formalin-fixed paraffin-embedded tissue sections of normal human cervix uteri. Consistent patterns of staining of the squamous epithelium were obtained in all 30 cases with BPA, GS II, MPA, PNA, SBA and WGA. A variable distribution of lectin binding was seen in squamous epithelium with Con A, GS I and UEA I. The patterns of GS I and GS II binding reflected squamous epithelial maturation. Columnar epithelium did not stain with GS II, stained variably with Con A, and stained consistently with the remaining seven lectins in all cases. No association between lectin binding and blood group or phase of the menstrual cycle was found. These findings may be used as a baseline for evaluation of lectin binding in both preinvasive and invasive lesions of the cervix uteri.  相似文献   

4.
Summary The histological localisation of -D-galactopyranosyl residues in glycoconjugates of rat stomach and duodenal mucosae was studied by use of Griffonia simplicifolia agglutinin I, i.e. the isolectin mixture (A+B) and the isolectin B4 (B4). Cryostat sections which were either unfixed or acetone fixed and paraffin sections from both ethanolacetic acid and formaldehyde fixed tissue blocks were compared. Cellular details were better preserved in paraffin than in cryostat sections. Reactivity of cells binding GS I was less sensitive after formaldehyde than after ethanol-acetic acid fixation inasmuch as higher concentrations of lectins were needed. This drawback could be overcome by trypsinisation of the sections. The binding pattern of GS I (A+B) corresponded with that of GS I (B4) in either cryostat or paraffin sections. GS I was detected in the cytoplasm of parietal cells and in Brunner's gland cells. In duodenal crypts and villi, lectin was bound to supranuclear regions in the cytoplasm of columnar and goblet cells. The staining efficiency of fluorescein (FITC), horseradish peroxidase (HRP) and colloidal gold particle (CGP) labels in both direct and indirect lectin stainings was compared. Under all experimental conditions, indirect methods required lower concentrations of lectins than direct ones; indirect procedures increased sensitivity about 5–10 fold. CGP labels were always of highest sensitivity when gold particles were further developed by a silver precipitation method. HRP was not as efficient in lectin localisation as CGP, but cytochemical staining was more convenient in routine work. Direct FITC labellings proved to be of lowest sensitivity.  相似文献   

5.
The presence of intranuclear and acrosomal lectin binding sites in spermatids and spermatozoa of the mosquito Culex quinquefasciatus was analysed. Direct and indirect lectin-gold techniques were used on LR White-embedded cells. The nuclear compartment was the structure most intensely labelled. Early spermatid nucleus showed moderate labelling for peanut agglutinin (PNA), Griffonia simplicifolia IB4 (GS-IB4) and Ricinus communis agglutinin (RCA), and light labelling for the other lectins tested. The sperm nucleus was intensely labelled by all lectins. The acrosome, an enzyme-containing structure, was labelled by some lectins. The anterior acrosomal region was labelled by PNA, while the proximal acrosomal region was labelled by PNA and G. simplicifolia II (GS II) lectins, and showed the presence of fucose residues with the use of Ulex europaeus I (UEA-I) lectin. The spermatozoa stored in the spermatheca showed the same pattern of labelling as that observed in spermatozoa localized in testis and seminal vesicles for all lectins tested. Carbohydrate residues in the nuclear compartment may be involved with the process of chromatin condensation. In the acrosomal region these residues may play a role in the process of spermoocyte interaction.  相似文献   

6.
Summary In an attempt to analyse the kinetics of angiogenesis in the brain, we developed a new lectin-histochemical staining technique for identifying the vasculature. Three horseradish-peroxidase-conjugated lectins, i.e., Griffonia simplicifolia agglutinin 1 (GS1), Ricinus communis agglutinin 1 (RCA1) and soybean agglutinin (SBA), selectively stained vascular walls in brain-tissue sections. When these lectins were injected into the circulation of ether-anesthetized animals via the pulsating left ventricle, they bound specifically to the inner surface of endothelial cells and revealed the three-dimensional architecture of the vascular network within thick tissue preparations. When this technique, referred to a lectin angiography, was combined with 5-bromo-2-deoxyuridine (BudR) immunohistochemistry, proliferating capillary cells could be easily identified in three-dimensional structures of the developing vasculature. Because of its simplicity and wide applicability, lectin angiography should be useful for analysing the kinetics of angiogenesis in developmental, regenerative, and pathological conditions in various tissues and organs.  相似文献   

7.
Abstract Various horseradish peroxidase-conjugated lectins have been used for the ultrastructural localization of carbohydrate moieties of glycoconjugates on plasma membranes of the surface cells of Blennius sanguinolentus epidermis. Concanavalia ensiformis (Con A), Arachis hypogaea (PNA), Pisum sativum (PSA) and Ulex europaeus (UEA I) lectins bind only to the outermost plasma membranes, the glycocalyx and the intercellular spaces of the surface cells. Other lectins applied, such as Triticum vulgare (WGA), Glycine max (SBA) and Griffonia simplicifolia (GS I), presenting GlcNAc and GaINAc specificity, reacted with the plasma membranes of basolateral domains and gave an attenuated reaction with the outermost plasma membranes. The results suggest that regional differences exist in the distribution patterns of GlcNAc and GalNAc-terminating glycoconjugates. The possible implication of the polarized expression of these glycoconjugates in ion transport is discussed.  相似文献   

8.
The present lectin histochemical comparison of cauda epididymal and ampullary bovine sperm was conducted to investigate whether ampullary secretions are involved in altering the plasma-membrane glycoconjugates of sperm. A marked redistribution of glycoconjugates between sperm from these two regions was indeed revealed on the basis of changes in binding patterns of the following fluoroscein-isothiocyanate (FITC)-labelled lectins: wheat-germ agglutinin (WGA), Maclura pomifera agglutinin (MPA), Griffonia simplicifolia I agglutinin (GS I) and Bauhinea purpurea agglutinin (BPA). This was evidenced in the first three cases by a relative reversal of staining intensity between the acrosomal and post-acrosomal regions, and by a pronounced increase in the staining of the midpiece. Changes in the distribution of BPA binding sites were limited to the latter phenomenon. The results are compared with previous findings, discussed in the context of the hypermotility characteristic of ampullary sperm and related to previously reported differences in the lectin-binding patterns of the luminal and glandular epithelia.  相似文献   

9.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

10.
The lectins Griffonia simplicifolia I and Lycopersicon esculentum were used to assess the presence of endothelium-specific glycoproteins in the microvasculature of the rat myocardium, diaphragm and superficial cerebral cortex. Organs fixed by intravascular perfusion were processed to obtain semithin (0.5 micron) and thin (less than 0.1 micron) frozen sections that were reacted with biotinylated lectin followed by streptavidin conjugated to Texas Red, for semithin sections, or by streptavidin conjugated to 5-nm colloidal gold particles, for thin sections. Lycopersicon esculentum lectin exclusively labeled the endothelium of all small vessels in all three microvascular beds; it did not bind to components of either the parenchyma or the extracellular matrix. Griffonia simplicifolia I lectin exclusively labeled the endothelium of the entire microvasculature in the myocardium and diaphragm, but marked primarily pericytes in the cerebral microvasculature. It did not label any parenchymal or interstitial organ component. At the electron microscope level, the lectin Griffonia simplicifolia I labeling was associated with the plasmalemma proper and especially with plasmalemmal vesicles and their introits, and Lycopersicon esculentum lectin bound primarily to the luminal plasmalemma in the microvascular beds of the myocardium and diaphragm. In the cerebral cortex, labeling of the microvasculature was clearly different: Griffonia simplicifolia I bound primarily to pericytes and vascular smooth muscle cells whereas Lycopersicon esculentum labeled only the microvascular endothelium. Lysates prepared from the myocardium, diaphragm and cerebral cortex were processed through Griffonia simplicifolia I lectin affinity separation followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fraction obtained. A number of putative endothelium-specific glycoproteins was detected and found to differ qualitatively and quantitatively from organ to organ. The most prominent polypeptide, approximately 97 kDa, was present in substantial amounts in the myocardium and diaphragm, but in considerably lower concentration in the cerebral cortex. The reverse applied for a approximately 55 kDa protein. The preferential distribution of the approximately 97 kDa protein parallels differences in Griffonia simplicifolia I lectin binding by fluorescence and electron microscopy on sections of the corresponding organs. The results provide further evidence for the existence of endothelial glycoproteins specific for different microvascular beds and possibly connected with local functional differentiations.  相似文献   

11.
Symbiodinium spp. dinoflagellates are common symbionts of marine invertebrates. The cell‐surface glycan profile may determine whether a particular Symbiodinium is able to establish and maintain a stable symbiotic relationship. To characterize this profile, eight Symbiodinium cultures were examined using eight glycan‐specific fluorescent lectin probes. Confocal imaging and flow‐cytometric analysis were used to determine significant levels of binding of each probe to the cell surface. No significant variation in glycan profile was seen within each Symbiodinium culture, either over time or over growth phase. No cladal trends in glycan profile were found, but of note, two different Symbiodinium cultures (from clades A and B) isolated from one host species had very similar profiles, and two other cultures (from clades B and F) from different host species had identical profiles. Two lectin probes were particularly interesting: concanavalin A (ConA) and Griffonia simplicifolia‐II (GS‐II). The ConA probe showed significant binding to all Symbiodinium cultures, suggesting the widespread presence of cell‐surface mannose residues, while the GS‐II probe, which is specific for glycans possessing N‐acetyl groups, showed significant binding to six of eight Symbiodinium cultures. Other probes showed significant binding to the following percentage of Symbiodinium cultures examined: wheat germ agglutinin (WGA), 37.5%; peanut agglutinin (PNA), 50%; Helix pomatia agglutinin (HPA), 50%; phytohemagglutinin‐L (PHA‐L), 62.5%; soybean agglutinin (SBA), 50%; and Griffonia simplicifolia‐IB4 (GS‐IB4), 12.5%. This study highlights the complexity of cell‐surface glycan assemblages and their potential role in the discrimination of different dinoflagellate symbionts by cnidarian hosts.  相似文献   

12.
Exposure to hypoxia alters many aspects of endothelial cell metabolism and function; however, changes in surface glycoconjugates under these conditions have not been extensively evaluated. In the current studies, we examined surface glycoproteins of cultured bovine aortic (BAEC) and pulmonary arterial (BPAEC) endothelial cells under standard culture conditions (21% oxygen) and following exposure to hypoxia (0% oxygen) for varying time periods (30 min to 18 h) using a system of biotinylation, lectin binding (concanavalin A, Con A; Griffonia simplicifolia , GSA; Arachis hypogaea, PNA; Ricinus communis, RCA; or Triticum vulgaris, WGA), subsequent strep-avidin binding, and staining. Using these methods, we identified differences in lectin binding between the two cell types cultured in 21% oxygen with all lectins except PNA. With exposure to 0% oxygen, there was no change in lectin binding to most surface glycoproteins. Several surface glycoproteins, including glycoprotein IIIa on both cell types, demonstrated a time-dependent decrease in lectin binding; in addition, there was an increase in lectin binding to a few specific surface glycoproteins on each cell type within 30-60 min of exposure to 0% oxygen. These changes in specific surface glycoproteins were confirmed in both cell types by 125I labeling. Increased lectin binding was observed for Con A binding BAEC glycoproteins at molecular weight (MW) 116, 130, and 205 kDa, GSA binding BAEC glycoproteins at MW 120 and 205 kDa, and RCA binding BPAEC glycoproteins at MW 140 and 205 kDa. Increased binding of WGA or PNA was not observed during exposure to hypoxia. The specificity of lectin binding was further confirmed by competitive inhibition with the appropriate sugar. These studies demonstrate that there are baseline differences between BAEC and BPAEC cell surface glycoproteins and that exposure to hypoxia is associated with little change in lectin binding to most surface glycoproteins. There is, however, increased surface expression of a few glycoproteins that differ depending of the origin of the endothelial cell. Although the mechanism of this increase in lectin binding is not yet clear, subsequent studies suggested that it is due to increased availability of select carbohydrate moieties. The time course of these alterations suggests a possible role in the endothelial cell response to decreases in ambient oxygen tension.  相似文献   

13.
We have studied changes in the binding of fluoresceinated lectins to human sperm during in vitro capacitation. We first determined the surface labeling pattern of viable sperm obtained by the swim-up procedure. Sperm were labeled with 100 μg/ml FITC-conjugated lectin at 4°C for 30 min. We simultaneously used Hoechst stain 33258 as a supravital stain to help differentiate surface from intracellular lectin labeling. Of 14 lectins studied, six (phytohemagglutinin-E, concanavalin A, Ricinus communis agglutinin-I, and the lectins of wheat germ, Lens culinaris, and Pisum sativum) bound to the entire surface of sperm, sometimes with minor local heterogeneity. Three lectins (from peanut, Maclura pomifera, and soybean) usually bound in a punctate manner, with more label on the tail than on the head. Five lectins (Ulex europaeus, Dolichos biflorus, Helix pomatia, and Vicia villosa lectins, and lectin II of Griffonia simplicifolia) bound very poorly or not at all to the sperm surface. Sperm were also inspected for changes in surface lectin binding patterns after 0, 5, and 23 hr of incubation in a capacitating medium. Two lectins showed reproducible changes. The labeling by Maclura pomifera agglutinin decreased by 5 hr in eight of ten experiments, and among sperm labeled with concanavalin A, the incidence of sperm with a highly fluorescent anterior margin of the sperm head increased by about 3.5-fold between 0 and 5 hr. The labeling pattern of the other lectins did not change.  相似文献   

14.
Summary Cryostat sections from rat gracilis muscles were incubated with different biotinylated lectins: Con A (Concanavilin A), WGA (Wheat germ agglutinin), SBA (soybean agglutinin), GS I and GS II (Griffonia simplicifolia agglutinin), LCA (Lens culinaris agglutinin), PNA (peanut agglutinin) and PSA (Pisum sativum agglutinin). The sections were subsequently treated with alkaline phosphatase conjugated avidin. The lectin binding sites were visualized after incubation in substrate media containing: (1) 5-bromo-4-chloro indoxyl phosphate and Nitro Blue tetrazolium or copper sulphate; (2) naphthol AS-MX phosphate or naphthol AS-BI phosphate and various types of diazonium salts; (3) -naphthylphosphate and Fast Blue BB; (4) -glycerophosphate according to the method of Gomori. The results obtained with the alkaline phosphatase methods were compared with those seen with a streptavidin-horseradish peroxidase procedure. Several chromogen protocols for visualizing alkaline phosphatase activity showed differences in the ability to detect lectin binding sites. A sarcoplasmic reaction was evident for Con A, GS II, WGA, LCA, and PSA after incubation in the indoxyl phosphate medium. Sarcoplasmic reaction for GS II was also noticed after incubation with naphthol AS-MX Fast Blue BB and -glycerophosphate. The latter substrate also gave rise to a sarcoplasmic Con A reaction. With the indoxylphosphate tetrazolium salt method some muscle fibres showed a very strong intracellular reaction after incubation with Con A and GS II while the staining intensity was weak in other fibres. The same muscle fibres were stained with PAS. No sarcoplasmic reactions were observed with either naphthol phosphate media or with the diaminobenzidine peroxidase methods. Further, the staining of the muscle fibre periphery, connective tissue, and capillaries was intensified using the indoxyl method. The indoxylphosphate-tetrazolium salt method seems to be suitable for future investigations of lectin binding sites in muscle sections.  相似文献   

15.
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low‐ and high‐grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low‐grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma‐specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC‐MS/MS. The identified proteins from the two cell types were quantified using label‐free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin‐based immunosorbent assay.  相似文献   

16.
Summary Protoplasts isolated from cell suspension cultures of carrot (Daucus carota L.) and leaves of tobacco (Nicotiana tabacum L.) were treated with three lectins specific for galactosyl residues. After incubation with RCA I (Ricinus communis agglutinin, molecular weight 120,000) conjugated to ferritin or fluorescein, freshly isolated protoplasts displayed heavy labeling of their surfaces. Moreover, they agglutinated rapidly when exposed to low concentrations of RCA I. In parallel studies, PNA (peanut agglutinin) also bound extensively to the protoplast plasma membranes whileBandeiraea simplicifolia lectin I attached relatively weakly. When protoplasts were cultured for two days and then incubated with conjugates of RCA I and PNA, additional binding sites were revealed on the regenerating walls.The results indicate that galactosyl residues are distributed densely over the surface of plant protoplasts. They also allow inferences to be made regarding the positions and linkages of the galactose groups being recognized by the lectins. Moreover, they open up the question whether the galactosyl moieties detected in the wall derive from those labeled on the plasma membrane. To conclude, we make comparisons with binding by concanavalin A, and predict that galactose-recognizing lectins will join and in certain respects prove superior to concanavalin A as probes of the plant cell surface.  相似文献   

17.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

18.
Some species of Spirogyra (a green alga) anchor to the substratumby differentiating the rhizoid. The transparent material secretedat the tip of the terminal cell or rhizoid is speculated tobe glycoprotein (Nagata 1977). To examine this, we treated Spirogyrafilaments with differentiating rhizoid with fluorescently labeledlectins. Among the nineteen lectins examined, only Bandeiraea(Griffonia) simplicifolia lectin I (BSL-I) strongly stainedthe transparent material, suggesting that the transparent materialcontains  相似文献   

19.
The B4-isolectin from Griffonia simplicifolia is known to stain microglial cells in a variety of species. The present report describes a lectin staining method that has been modified to facilitate staining of resting microglia, as well as perivascular cells, in vibratome sections of normal sheep brain. This modified method employs tissue fixed in formaldehyde or paraformaldehyde and requires incubating sections with Triton X-100 prior to staining.  相似文献   

20.
This study was performed to evaluate the application of different lectins and monoclonal antibodies against ABH antigens to detect and characterize carbohydrate structures in capillaries of skeletal muscle from humans and laboratory animals. Blood group specific lectins (Griffonia simplicifolia, Griffonia simplicifolia isolectin B4,Lotus tetragonlobus, Ulex europaeus, andDolichos biflorus) and monoclonal antibodies reacting with histo-blood group carbohydrate antigens belonging to type 1 (Lea) and type 2 (H, A and Ley) chains were used as histological markers for capillaries in sections from skeletal muscle. The material consisted of 20 human masseter muscle biopsies from individuals with known blood types: (eight blood group O, nine blood group A, two blood group B, and one blood group AB) and masseter muscles specimens from different laboratory animals (mouse, rat, rabbit, cat, dog, pig, cow, and macaca monkey). Unfixed sections and an avidin alkaline phosphatase method were used to visualize the specific reaction.Ulex lectin stained capillaries in all human biopsies either strongly or moderately. Strong muscle capillary reaction was observed in biopsies from O, B and AB individuals while capillaries from A individuals were only moderately stained.Griffonia simplicifolia marked capillaries in A, B, and AB individuals andGriffonia simplicifolia isolectin B4 stained capillaries in muscle biopsies from B and AB donors.Dolichos biflorus was a weak marker of muscle capillaries from A individuals. Only capillaries from O individuals were stained with the antibody against H type 2. Capillary reaction was not observed with the other antibodies used.Girffonia simplicifolia was an excellent marker for capillaries in mouse muscle whileGriffonia simplicifolia isolectin B4 is recommended for rat muscles. Periodic acid treatment and subsequentLotus tetragonolobus staining is suitable to visualize capillaries in mouse, rat and pig muscle. Using a sensitive histochemical technique for staining with lectins and monoclonal antibodies reacting with blood group related antigens the microvascular density in human skeletal muscle may be estimated. Further, the carbohydrate compounds in the muscle capillaries reflect the individual blood type. A selection of lectins is suitable for demonstration of capillaries in animal skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号