首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The grass Lolium perenne produces an ice-binding protein (LpIBP) that helps this perennial tolerate freezing by inhibiting the recrystallization of ice. Ice-binding proteins (IBPs) are also produced by freeze-avoiding organisms to halt the growth of ice and are better known as antifreeze proteins (AFPs). To examine the structural basis for the different roles of these two IBP types, we have solved the first crystal structure of a plant IBP. The 118-residue LpIBP folds as a novel left-handed beta-roll with eight 14- or 15-residue coils and is stabilized by a small hydrophobic core and two internal Asn ladders. The ice-binding site (IBS) is formed by a flat beta-sheet on one surface of the beta-roll. We show that LpIBP binds to both the basal and primary-prism planes of ice, which is the hallmark of hyperactive AFPs. However, the antifreeze activity of LpIBP is less than 10% of that measured for those hyperactive AFPs with convergently evolved beta-solenoid structures. Whereas these hyperactive AFPs have two rows of aligned Thr residues on their IBS, the equivalent arrays in LpIBP are populated by a mixture of Thr, Ser and Val with several side-chain conformations. Substitution of Ser or Val for Thr on the IBS of a hyperactive AFP reduced its antifreeze activity. LpIBP may have evolved an IBS that has low antifreeze activity to avoid damage from rapid ice growth that occurs when temperatures exceed the capacity of AFPs to block ice growth while retaining the ability to inhibit ice recrystallization.  相似文献   

2.
Some cold water marine fishes avoid cellular damage because of freezing by expressing antifreeze proteins (AFPs) that bind to ice and inhibit its growth; one such protein is the globular type III AFP from eel pout. Despite several studies, the mechanism of ice binding remains unclear because of the difficulty in modeling the AFP-ice interaction. To further explore the mechanism, we have determined the x-ray crystallographic structure of 10 type III AFP mutants and combined that information with 7 previously determined structures to mainly analyze specific AFP-ice interactions such as hydrogen bonds. Quantitative assessment of binding was performed using a neural network with properties of the structure as input and predicted antifreeze activity as output. Using the cross-validation method, a correlation coefficient of 0.60 was obtained between measured and predicted activity, indicating successful learning and good predictive power. A large loss in the predictive power of the neural network occurred after properties related to the hydrophobic surface were left out, suggesting that van der Waal's interactions make a significant contribution to ice binding. By combining the analysis of the neural network with antifreeze activity and x-ray crystallographic structures of the mutants, we extend the existing ice-binding model to a two-step process: 1) probing of the surface for the correct ice-binding plane by hydrogen-bonding side chains and 2) attractive van der Waal's interactions between the other residues of the ice-binding surface and the ice, which increases the strength of the protein-ice interaction.  相似文献   

3.
Type III antifreeze protein (AFP) is a 7-kDa globular protein with a flat ice-binding face centered on Ala 16. Neighboring hydrophilic residues Gln 9, Asn 14, Thr 15, Thr 18 and Gln 44 have been implicated by site-directed mutagenesis in binding to ice. These residues have the potential to form hydrogen bonds with ice, but the tight packing of side chains on the ice-binding face limits the number and strength of possible hydrogen bond interactions. Recent work with alpha-helical AFPs has emphasized the hydrophobicity of their ice-binding sites and suggests that hydrophobic interactions are important for antifreeze activity. To investigate the contribution of hydrophobic interactions between type III AFP and ice, Leu, Ile and Val residues on the rim of the ice-binding face were changed to alanine. Mutant AFPs with single alanine substitutions, L19A, V20A, and V41A, showed a 20% loss in activity. Doubly substituted mutants, L19A/V41A and L10A/I13A, had less than 50% of the activity of the wild type. Thus, side chain substitutions that leave a cavity or undercut the contact surface are almost as deleterious to antifreeze activity as those that lengthen the side chain. These mutations emphasize the importance of maintaining a specific surface contour on the ice-binding face for docking to ice.  相似文献   

4.
The beetle Tenebrio molitor produces several isoforms of a highly disulfide-bonded beta-helical antifreeze protein with one surface comprised of an array of Thr residues that putatively interacts with ice. In order to use mutagenesis to identify the ice-binding face, we have selected an isoform that folds well and is tolerant of amino acid substitution, and have developed a heating test to monitor refolding. Three different types of steric mutations made to the putative ice-binding face reduced thermal hysteresis activity substantially while a steric mutation on an orthogonal surface had little effect. NMR spectra indicated that all mutations affected protein folding to a similar degree and demonstrated that most of the protein folded well. The large reductions in activity associated with steric mutations in the Thr array strongly suggest that this face of the protein is responsible for ice binding.  相似文献   

5.
An ice-binding protein from an Antarctic sea ice bacterium   总被引:4,自引:0,他引:4  
An Antarctic sea ice bacterium of the Gram-negative genus Colwellia, strain SLW05, produces an extracellular substance that changes the morphology of growing ice. The active substance was identified as a approximately 25-kDa protein that was purified through its affinity for ice. The full gene sequence was determined and was found to encode a 253-amino acid protein with a calculated molecular mass of 26,350 Da. The predicted amino acid sequence is similar to predicted sequences of ice-binding proteins recently found in two species of sea ice diatoms and a species of snow mold. A recombinant ice-binding protein showed ice-binding activity and ice recrystallization inhibition activity. The protein is much smaller than bacterial ice-nucleating proteins and antifreeze proteins that have been previously described. The function of the protein is unknown but it may act as an ice recrystallization inhibitor to protect membranes in the frozen state.  相似文献   

6.
The sequence and activity of antifreeze proteins from two right eye flounder species were compared to assess the influence of structural variations on antifreeze capacity. The cDNA encoding the major serum antifreeze protein in the yellowtail flounder (Limanda ferruginea) was cloned from liver tissue. Its DNA sequence shows that the precursor to the antifreeze is a 97-residue preproportion. Edman degradation identified the N-terminus of the 48-amino-acid mature serum antifreeze protein and confirmed the sequence of the first 36 residues. A comparison with the previously determined winter flounder antifreeze protein and mRNA sequences shows strong homology through the 5' and 3' untranslated regions and in the peptide region. The mature protein section has the greatest sequence variation. Specifically, the yellowtail antifreeze protein, in contrast to that of the winter flounder, contains a fourth 11-amino-acid repeat and lacks several of the hydrophilic residues that have been postulated to aid in the binding of the protein to ice crystals. Intramolecular salt bridges are present in the antifreeze proteins from both species but in different registries with respect to the 11-amino-acid repeats. On a mass basis the yellowtail flounder antifreeze, though longer than that of the winter flounder, is only 80% as effective at depressing the freezing temperature of aqueous solutions. This lower activity might be due to the reduced number of hydrophilic ice-binding residues per molecule.  相似文献   

7.
Mutation of residues at the ice-binding site of type III antifreeze protein (AFP) not only reduced antifreeze activity as indicated by the failure to halt ice crystal growth, but also altered ice crystal morphology to produce elongated hexagonal bipyramids. In general, the c axis to a axis ratio of the ice crystal increased from approximately 2 to over 10 with the severity of the mutation. It also increased during ice crystal growth upon serial dilution of the wild-type AFP. This is in marked contrast to the behavior of the alpha-helical type I AFPs, where neither dilution nor mutation of ice-binding residues increases the c:a axial ratio of the ice crystal above the standard 3.3. We suggest that the ice crystal morphology produced by type III AFP and its mutants can be accounted for by the protein binding to the prism faces of ice and operating by step growth inhibition. In this model a decrease in the affinity of the AFP for ice leads to filling in of individual steps at the prism surfaces, causing the ice crystals to grow with a longer c:a axial ratio.  相似文献   

8.
A variety of organisms have independently evolved proteins exhibiting antifreeze activity that allows survival at subfreezing temperatures. The antifreeze proteins (AFPs) bind ice nuclei and depress the freezing point by a noncolligative absorption–inhibition mechanism. Many organisms have a heterogeneous suite of AFPs with variation in primary sequence between paralogous loci. Here, we demonstrate that the diversification of the AFP paralogues is promoted by positive Darwinian selection in two independently evolved AFPs from fish and beetle. First, we demonstrate an elevated rate of nonsynonymous substitutions compared to synonymous substitutions in the mature protein coding region. Second, we perform phylogeny-based tests of selection to demonstrate a subset of codons is subjected to positive selection. When mapped onto the three-dimensional structure of the fish antifreeze type III antifreeze structure, these codons correspond to amino acid positions that surround but do not interrupt the putative ice-binding surface. The selective agent may be related to efficient binding to diverse ice surfaces or some other aspect of AFP function. Received: 27 February 2001 / Accepted: 12 September 2001  相似文献   

9.
Two sets of variants of type I antifreeze protein have been synthesized to investigate the role of Leu and Asn in the activity of this 37-residue alpha-helix. Leu and Asn flank the central two of four regularly spaced ice-binding Thr in the i-1 and i + 3 positions, respectively. All three residues project from the same side of the helix to form the protein's putative ice-adsorption site and are considered in some models to act together as an "ice-binding motif". Replacement of Asn by residues with shorter side chains resulted in either a small loss (Ala) or gain (Thr) of antifreeze activity. However, substitution of Asn by its slightly larger homologue (Gln) abolished thermal hysteresis activity. The Gln-containing peptide was very soluble, largely monomeric, and fully helical. Of the three variants in which Leu was replaced by Ala, two of the three were more active than their Leu-containing counterparts, but all three variants began to precipitate as the peptide concentration increased. None of the seven variants tested showed dramatic differences in ice crystal morphology from that established by the wild type. These results are consistent with a primary role for Leu in preventing peptide aggregation at the antifreeze protein concentrations (10 mg/mL) normally present in fish serum. Similarly the role for Asn may have more to do with enhancing the solubility of these rather hydrophobic peptides than of making a stereospecific hydrogen-bonding match to the ice lattice as traditionally thought. Nevertheless, the dramatic loss of activity in the Asn-to-Gln replacement demonstrates the steric restriction on residues in or near the ice-binding site of the peptide.  相似文献   

10.
Antifreeze proteins (AFPs), found in certain vertebrates, plants, fungi and bacteria have the ability to permit their survival in subzero environments by thermal hysteresis mechanism. However, the exact mechanism of ice growth inhibition is still not clearly understood. Here, four long explicit molecular dynamics (MD) simulations have been carried out at two different temperatures (277 and 298 K) with and without glycan to study the conformational rigidity of the Ocean pout type III antifreeze protein in aqueous medium and the structural arrangements of water molecules hydrating its ice-binding surface. It is found that irrespective of the temperature the ice-binding surface (IBS) of the protein is relatively more rigid than its non ice-binding surface (NonIBS) in its native and glycosylated form. Hydrophilic residues N14, T18 and Q44 are essential to antifreeze activity. Radial distribution, density distribution function and nearest neighbor orientation plots with respect to individual two surfaces confirm that density of water molecule near these binding surface in native and glycosylated form are relatively more than the nonbinding surface. The glycosylated form shows a strong peak than the native one. From rotational auto correlation function of water molecules around ice-binding sites, it is prominent that with increase in temperature, strong interaction between the water oxygen and the hydrogen bond acceptor group on the protein-binding surface decreases. This provides a possible molecular reason behind the ice-binding activity of ocean pout at the prism plane of ice.  相似文献   

11.
The alanine-rich alpha-helical antifreeze protein from the winter flounder Pseudopleuronectes americanus adsorbs to specific planes of ice guided by an ice lattice match to threonine residues regularly spaced 16.6 A apart. We report here that by redesigning the winter flounder antifreeze peptide to incorporate a 27.1-A spacing between putative 'ice-binding' threonines, the deduced binding alignment of the helical molecule on the ice lattice is changed from the Miller indices directional vector [1102 ] to [2203 ]. Subsequent ice-binding characteristics are altered, including changes in adsorption specificity, decreases in thermal hysteresis activity and the formation of rotated hexagonal bipyramid ice crystal morphology.  相似文献   

12.
A theoretical model of a plant antifreeze protein from Lolium perenne.   总被引:16,自引:0,他引:16       下载免费PDF全文
Antifreeze proteins (AFPs), found in certain organisms enduring freezing environments, have the ability to inhibit damaging ice crystal growth. Recently, the repetitive primary sequence of the AFP of perennial ryegrass, Lolium perenne, was reported. This macromolecular antifreeze has high ice recrystallization inhibition activity but relatively low thermal hysteresis activity. We present here a theoretical three-dimensional model of this 118-residue plant protein based on a beta-roll domain with eight loops of 14-15 amino acids. The fold is supported by a conserved valine hydrophobic core and internal asparagine ladders at either end of the roll. Our model, which is the first proposed for a plant AFP, displays two putative, opposite-facing, ice-binding sites with surface complementarity to the prism face of ice. The juxtaposition of the two imperfect ice-binding surfaces suggests an explanation for the protein's inferior thermal hysteresis but superior ice recrystallization inhibition activity and activity when compared with fish and insect AFPs.  相似文献   

13.
A naturally occurring tandem duplication of the 7-kDa type III antifreeze protein from Antarctic eel pout (Lycodichthys dearborni) is twice as active as the monomer in depressing the freezing point of a solution. We have investigated the basis for this enhanced activity by producing recombinant analogues of the linked dimer that assess the effects of protein size and the number and area of the ice-binding site(s). The recombinant dimer connected by a peptide linker had twice the activity of the monomer. When one of the two ice-binding sites was inactivated by site-directed mutagenesis, the linked dimer was only 1.2 times more effective than the monomer. When the two monomers were linked through a C-terminal disulfide bond in such a way that their two ice-binding sites were opposite each other and unable to engage the same ice surface simultaneously, the dimer was again only 1.2 times as active as the monomer. We conclude from these analyses that the enhanced activity of the dimer stems from the two ice-binding sites being able to engage to ice at the same time, effectively doubling the area of the ice-binding site.  相似文献   

14.
Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ~25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-? resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96-115 form a long α-helix that packs along one face of the β-helix), and a C-terminal hydrophobic loop region ((243)PFVPAPEVV(251)). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn(185) provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins.  相似文献   

15.
Ice-binding mechanism of winter flounder antifreeze proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
We have studied the winter flounder antifreeze protein (AFP) and two of its mutants using molecular dynamics simulation techniques. The simulations were performed under four conditions: in the gas phase, solvated by water, adsorbed on the ice (2021) crystal plane in the gas phase and in aqueous solution. This study provided details of the ice-binding pattern of the winter flounder AFP. Simulation results indicated that the Asp, Asn, and Thr residues in the AFP are important in ice binding and that Asn and Thr as a group bind cooperatively to the ice surface. These ice-binding residues can be collected into four distinct ice-binding regions: Asp-1/Thr-2/Asp-5, Thr-13/Asn-16, Thr-24/Asn-27, and Thr-35/Arg-37. These four regions are 11 residues apart and the repeat distance between them matches the ice lattice constant along the (1102) direction. This match is crucial to ensure that all four groups can interact with the ice surface simultaneously, thereby, enhancing ice binding. These Asx (x = p or n)/Thr regions each form 5-6 hydrogen bonds with the ice surface: Asn forms about three hydrogen bonds with ice molecules located in the step region while Thr forms one to two hydrogen bonds with the ice molecules in the ridge of the (2021) crystal plane. Both the distance between Thr and Asn and the ordering of the two residues are crucial for effective ice binding. The proper sequence is necessary to generate a binding surface that is compatible with the ice surface topology, thus providing a perfect "host/guest" interaction that simultaneously satisfies both hydrogen bonding and van der Waals interactions. The results also show the relation among binding energy, the number of hydrogen bonds, and the activity. The activity is correlated to the binding energy, and in the case of the mutants we have studied the number of hydrogen bonds. The greater the number of the hydrogen bonds the greater the antifreeze activity. The roles van der Waals interactions and the hydrophobic effect play in ice binding are also highlighted. For the latter it is demonstrated that the surface of ice has a clathratelike structure which favors the partitioning of hydrophobic groups to the surface of ice. It is suggested that mutations that involve the deletion of hydrophobic residues (e.g., the Leu residues) will provide insight into the role the hydrophobic effect plays in partitioning these peptides to the surface of ice.  相似文献   

16.
Antifreeze proteins (AFPs) are found in cold-adapted organisms and have the unusual ability to bind to and inhibit the growth of ice crystals. However, the underlying molecular basis of their ice-binding activity is unclear because of the difficulty of studying the AFP-ice interaction directly and the lack of a common motif, domain or fold among different AFPs. We have formulated a generic ice-binding model and incorporated it into a physicochemical pattern-recognition algorithm. It successfully recognizes ice-binding surfaces for a diverse range of AFPs, and clearly discriminates AFPs from other structures in the Protein Data Bank. The algorithm was used to identify a novel AFP from winter rye, and the antifreeze activity of this protein was subsequently confirmed. The presence of a common and distinct physicochemical pattern provides a structural basis for unifying AFPs from fish, insects and plants.  相似文献   

17.
W Zhang  R A Laursen 《FEBS letters》1999,455(3):372-376
Antifreeze polypeptides from fish are generally thought to inhibit ice crystal growth by specific adsorption onto ice surfaces and preventing addition of water molecules to the ice lattice. Recent studies have suggested that this adsorption results from hydrogen bonding through the side chains of polar amino acids as well as hydrophobic interactions between the non-polar domains on the ice-binding side of antifreeze polypeptides and the clathrate-like surfaces of ice. In order to better understand the activity of one of the antifreeze polypeptide families, namely the alpha-helical type I antifreeze polypeptides, four alpha-helical peptides having sequences not directly analogous to those of known antifreeze polypeptides and containing only positively charged and non-polar side chains were synthesized. Two peptides with regularly spaced lysine residues, GAAKAAKAAAAAAAKAAKAAAAAAAKAAKAAGGY-NH2 and GAALKAAKAAAAAALKAAKAAAAAALKAAKAAGGY-NH2, showed antifreeze activity, albeit weaker than seen in natural antifreeze polypeptides, by the criteria of freezing point depression (thermal hysteresis) and ice crystal modification to a hexagonal trapezohedron. Peptides with irregular spacing of Lys residues were completely inactive. Up to now, lysine residues have not been generally associated with antifreeze activity, though they have been implicated in some antifreeze polypeptides. This work also shows that lysine residues in themselves, when properly positioned on an alpha-helical polyalanine scaffold, have all the requisite properties needed for such an activity.  相似文献   

18.
Li Z  Lin Q  Yang DS  Ewart KV  Hew CL 《Biochemistry》2004,43(46):14547-14554
The type II antifreeze protein of Atlantic herring (Clupea harengus harengus) requires Ca(2+) as a cofactor to inhibit the growth of ice crystals. On the basis of homology modeling with Ca(2+)-dependent lectin domains, five residues of herring antifreeze protein (hAFP) are predicted to be involved in Ca(2+) binding: Q92, D94, E99, N113, and D114. The role of E99, however, is less certain. A previous study on a double mutant EPN of hAFP suggested that the Ca(2+)-binding site of hAFP was the ice-binding site. However, it is possible that Ca(2+) might function distantly to affect ice binding. Site-directed mutagenesis was performed on the Ca(2+)-coordinating residues of hAFP in order to define the location of the ice-binding site and to explore the role of these residues in antifreeze activity. Properties of the mutants were investigated in terms of their structural integrity and antifreeze activity. Equilibrium dialysis analysis demonstrated that E99 is a Ca(2+)-coordinating residue. Moreover, proteolysis protection assay revealed that removal of Ca(2+) affected the conformation of the Ca(2+)-binding loop rather than the core structure of hAFP. This finding rules out the possibility that Ca(2+) might act at a distance via a conformational change to affect the function of hAFP. Substitutions at positions 99 and 114 resulted in severely reduced thermal hysteresis activity. These data indicate that the ice-binding site of hAFP is located at the Ca(2+)-binding site and the loop region defined by residues 99 and 114 is important for antifreeze activity.  相似文献   

19.
Cheng Y  Yang Z  Tan H  Liu R  Chen G  Jia Z 《Biophysical journal》2002,83(4):2202-2210
Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition.  相似文献   

20.
G Chen  Z Jia 《Biophysical journal》1999,77(3):1602-1608
We employed computational techniques, including molecular docking, energy minimization, and molecular dynamics simulation, to investigate the ice-binding surface of fish type III antifreeze protein (AFP). The putative ice-binding site was previously identified by mutagenesis, structural analysis, and flatness evaluation. Using a high-resolution x-ray structure of fish type III AFP as a model, we calculated the ice-binding interaction energy of 11 surface patches chosen to cover the entire surface of the protein. These various surface patches exhibit small but significantly different ice-binding interaction energies. For both the prism ice plane and an "ice" plane in which water O atoms are randomly positioned, our calculations show that a surface patch containing 14 residues (L19, V20, T18, S42, V41, Q9, P12, A16, M21, T15, Q44, I13, N14, K61) has the most favorable interaction energy and corresponds to the previously identified ice-binding site of type III AFP. Although in general agreement with the earlier studies, our results also suggest that the ice-binding site may be larger than the previously identified "core" cluster that includes mostly hydrophilic residues. The enlargement mainly results from the inclusion of peripheral hydrophobic residues and K61.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号