首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
两种化学修饰菌紫质的光化循环和光电位   总被引:1,自引:1,他引:0  
本文分别用两种氮氧自由基对菌紫质(bR)中的两种氨基酸残基——赖氨酸和丝氨酸进行了修饰,并对修饰后的bR光循环中间产物M_(412)动力学过程、质子泵效率及光电响应信号进行了测量。通过与正常紫膜进行比较,可以看出:赖氨酸被修饰后,M_(412)快、慢组分的衰减及质子的吸收过程均减慢,M_(412)和质子的产额、跨膜光电位信号均有不同程度的提高;丝氨酸被修饰后,M_(412)和质子的动力学过程的变化与赖氨酸基本相同,但M_(412)和质子的产额及跨膜光电位提高很大,且光电位出现缓慢反向现象。结果表明赖氨酸不大可能直接参与质子的传递过程,其对紫膜质子泵的影响主要是通过其所带电荷对表面电位的贡献;而丝氨酸却似乎对bR的功能影响很大并对维持质子通道构象环境的稳定起着很大作用。  相似文献   

2.
本文研究在乾燥紫膜薄层中不同水合程度对光循环中间体M衰减速率,对园二色谱(CD)和蛋白紫外荧光光谱的影响.在相对湿度小于70%时,M衰减速率相对稳定,不随湿度改变而变化;但当湿度大于70%时,则衰减速率急剧上升.从可见区的CD光谱中,也发现了在相对湿度大于70%后,旋转强度急剧上升.蛋白紫外荧光光谱随湿度增加未发现有明显变化.实验结果说明一定水份的含量对紫膜完成质子泵功能是必不可少的,它能改变色素团的微环境,从而改变色素团和蛋白间的相互作用.  相似文献   

3.
嵌入紫膜碎片的BLM系统在不同离子强度的介质中产生不同的光电位信号。本文通过在介质中加入离子载体或离子通道剂对紫膜的光电响应信号进行了系统的研究。结果表明:上述光电位信号的差异主要是由紫膜的非质子离子的迁移引起的。与紫膜的质子跨膜迁移相比,这种非质子离子迁移也是由光驱动的,随介质的离子强度的增强而显著增强,但它的迁移速率更快,且产生反向的光电位。用通常方法所获得的光电位信号主要是这两种迁移信号的迭加。三价阳离子(La~(3+))可使紫膜质子泵反向并能抑制质子的吸收,但它似乎并不参与紫膜的非质子离子迁移。  相似文献   

4.
CHAPS对M_(412)的动力学和共振拉曼光谱的影响   总被引:1,自引:1,他引:0  
研究了表面活性剂CHAPS对紫膜中菌紫质在光循环过程中M_(412)的衰减速率及质子泵功能的影响.光循环中间体M_(412)快、慢衰减组分的衰减速率及质子衰减速率均受到CHAPS的影响,综合激光拉曼光谱对M_(412)和其它光循环中间体相对含量的测定,表明CHAPS对紫膜的影响是通过影响其膜脂完整的液晶结构,而使紫膜光循环动力学过程及质子泵功能发生变化的.  相似文献   

5.
利用紫外可见吸收光谱和动力学光谱法研究了无水肼对蓝膜的影响,研究结果表明:无水肼可以使蓝膜转化为紫膜,同时光循环也得到恢复,但是光循环中间体M412的衰减加快,这与金属阳离子加入到蓝膜溶液中时的现象是完全不同的(这个过程中M412的衰减是减慢的).同时研究了pH和温度对无水肼与蓝膜之间相互作用的影响.在无水肼加入到蓝膜溶液中时,重组反应的灵敏度是pH和温度依赖的.在pH4.8到pH2之间,灵敏度随酸性的增加而降低.在20~40℃之间,无水肼与蓝膜溶液的反应灵敏度随着温度的升高而降低.  相似文献   

6.
蜂毒对菌紫质(bR)光循环中间体M_(412)和质子泵的影响   总被引:2,自引:1,他引:1  
蜂毒对菌紫质(bR)光循环中间体M_(412)及质子泵的动力学过程有较大影响.表现在M_(412)慢衰减组分(M_(412~S))和质子的半衰期增大及产出量的减小,说明蜂毒分子的介入抑制了M_(412)的生成和衰减过程,同时也阻碍了紫膜的质子泵功能.但似乎对M_(412)快衰减组分影响不大.以上结果支持了M_(412~S)与质子泵功能有关的说法.实验结果同时反映出蜂毒除与膜脂分子存在强烈作用外还与bR本身直接作用.因此,蜂毒是一种研究膜脂蛋白相互作用及膜蛋白功能的较好材料.  相似文献   

7.
水在菌紫质光循环和质子泵中的作用   总被引:1,自引:1,他引:0  
用圆二色仪和闪光动力学先谱仪分别测量了空气干燥紫膜薄层的圆二色谱及紫膜LB膜的M_(412)的衰减过程.在于燥紫膜的圆二色谱上出现412nm的正峰,它是光循环中间体M_(412)的特征峰.在无水介质中,紫膜LB膜中的BR仍能进行先化学循环而检测到中间体M_(412),但M_(412)的衰减速度减慢,产生M_(412)的堆积,质子化过程受阻.在有水的介质中,只要有足够的H~+存在,紫膜LB膜中的BR的中间体M_(412)的衰减速度明显加快.说明水介质的H~+是完成正常光化学循和质子化过程必不可少的.  相似文献   

8.
A型流感病毒膜质子通道M2是一个重要的抗流感药物靶点,其通道功能与蛋白质构象变化紧密相关.M2跨膜螺旋结构与功能的研究已经取得了显著进展,但其膜内碳端两亲性螺旋的构象变化与M2功能的关系尚不明确.在这个两亲性螺旋中引入能与跨膜域色氨酸形成福斯特共振能量转移(FRET)作用的非天然氨基酸Phe CN,以便研究通道激活或抑制后M2蛋白膜内部分的构象变化.在酸性环境通道激活的条件下,两亲性螺旋与跨膜螺旋间的距离增大,其增大幅度基本不受药物抑制通道活性的影响.由此推测两亲性螺旋的构象变化与通道活性无关,反而很可能与M2在病毒出芽过程中的作用相关.  相似文献   

9.
紫膜在含水凝胶中的定向和状态   总被引:1,自引:0,他引:1  
用几种光谱学方法研究了紫膜凝胶的定向度、生色团视黄醛的状态以及其光循环中间产物M的动力学过程。结果表明:用通常采用的制备方法所得到的紫膜凝胶虽然能得到光电响应信号,但其定向度并不理想,生色团视黄醛的构象受到较大扰动,光循环中间产物M的产出及衰减也受到抑制,部分样品甚至由于其视黄醛的脱落而完全失去颜色,其质子泵功能也随之丧失。这说明虽然紫膜凝胶是目前研究紫膜质子泵机理(光电响应测量)和构造分子电子器件较好的和有希望的人工膜系统之一,但由于该系统对紫膜结构和功能的扰动仍然较大,紫膜的定向较难控制,所以,我们仍需在凝胶的形成体系及方法的改进上作大量工作。  相似文献   

10.
北青龙衣抗肿瘤谱效关系研究初探   总被引:1,自引:0,他引:1  
目的:对北青龙衣抗肿瘤谱效关系进行初步研究。方法:采用乙醇冷浸提取,大孔树脂进行初步分离,所得到的各组分用MTT法进行体外细胞毒试验,测定各组分对人胃癌细胞BGC803的抑制活性,并用薄层色谱进行初步谱效关系研究。结果:大孔树脂经30%乙醇洗脱的组分显示较强的细胞毒活性,薄层色谱显示该组分为极性大和极性小的成分的复杂组合。结论:大孔树脂经30%乙醇洗脱的组分在北青龙衣抗肿瘤活性中起重要作用。  相似文献   

11.
The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms.  相似文献   

12.
H Garty  S R Caplan    D Cahen 《Biophysical journal》1982,37(2):405-415
Enthalpy changes associated with intermediates of the photocycle of bacteriorhodopsin (bR) in light-adapted Halobacterium halobium purple membranes, and decay times of these intermediates, are obtained from photoacoustic measurements on purple membrane fragments. Our results, mainly derived from modulation frequency spectra, show changes in the amount of energy stored in the intermediates and in their decay times as a function of pH and/or salt concentration. Especially affected are the slowest step (endothermic) and a spectroscopically unidentified intermediate (both at pH 7). This effect is interpreted in terms of cation binding to the protein, conformational changes of which are thought to be connected with the endothermic process. Wavelength spectra are used to obtain heat dissipation spectra, which allow identification of wavelength regions with varying photoactivity, and estimation of the amounts of enthalpy stored in the photointermediates. Because of bleaching and accumulation of intermediates, however, and because of the small fraction of light energy stored during photocycle, quantitative information cannot be obtained. From photoacoustic wavelength spectra of purple membrane fragments equilibrated at 63% relative humidity, rise and decay times of the bR570 and M412 intermediates are calculated.  相似文献   

13.
Shiger U Itoh  Norio Murata 《BBA》1974,333(3):525-534
1. Delayed light of chlorophyll emitted at 0.1–3.9 ms after cessation of repetitive flash light was studied at temperatures between +40 and −196 °C in isolated spinach chloroplasts.

2. Induction kinetics of delayed light varied depending on temperature. It was found to be composed of two phases; one was an initial rapid rise followed by a rather fast decline to a low steady state level (fast phase), and the other was a slow increase after the initial rapid rise to the maximum followed by an insignificant slow decrease to a high steady state level (slow phase). The fast phase existed between −175 and 40 °C with the maximum at −40 °C, while the slow phase, between 0 and 40 °C with the maximum at 25 °C.

3. The intensity of delayed light at −175 °C was found to be less than one fiftieth that at 0 °C, and no delayed light emission was observed at −196 °C within experimental accuracy. This is in contrast to the results reported by Tollin, G., Fujimori, E. and Calvin, M. ((1958) Proc. Natl. Acad. Sci. U.S. 44, 1035–1047) in which the intensity of delayed light measured at −170 °C was about a half that at 0 °C.

4. The induction of delayed light measured at −96 °C was found to be significantly suppressed by the preillumination at −196 °C. This finding suggests that the primary photochemical event still survives at −196 °C without emission of delayed light.

5. Decay kinetics of delayed light after the flash excitation revealed the presence of at least two decay components. A slow decay component with a half decay time of several tens of milliseconds was observed at temperatures higher than 0 °C. A fast decay component with a half decay time of about 0.2 ms was observed at temperatures between −120 and 25 °C. The decay rate of this component was slightly retarded on cooling.

6. The System II particles derived from spinach chloroplasts with digitonin treatment showed a temperature dependence of delayed light similar to that of the chloroplasts. System I particles, on the other hand, scarcely emitted the delayed light at any temperature between 40 and −196 °C.  相似文献   


14.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Fluorescence decay kinetics of chlorophyll in photosynthetic membranes   总被引:2,自引:0,他引:2  
The absorption of light by the pigments of photosynthetic organisms results in electronic excitation that provides the energy to drive the energy-storing light reactions. A small fraction of this excitation gives rise to fluorescence emission, which serves as a sensitive probe of the energetics and kinetics of the excited states. The wavelength dependence of the excitation and emission spectra can be used to characterize the nature of the absorbing and fluorescing molecules and to monitor the process of sensitization of the excitation transfer from one pigment to another. This excitation transfer process can also be followed by the progressive depolarization of the emitted radiation. Using time-resolved fluorescence rise and decay kinetics, measurements of these processes can now be characterized to as short as a few picoseconds. Typically, excitation transfer among the antenna or light harvesting pigments occurs within 100 psec, whereupon the excitation has reached a photosynthetic reaction center capable of initiating electron transport. When this trap is functional and capable of charge separation, the fluorescence intensity is quenched and only rapidly decaying kinetic components resulting from the loss of excitation in transit in the antenna pigment bed are observed. When the reaction centers are blocked or saturated by high light intensities, the photochemical quenching is relieved, the fluorescence intensity rises severalfold, and an additional slower decay component appears and eventually dominates the decay kinetics. This slower (1-2 nsec) decay results from initial charge separation followed by recombination in the blocked reaction centers and repopulation of the excited electronic state, leading to a rapid delayed fluorescence component that is the origin of variable fluorescence. Recent growth in the literature in this area is reviewed here, with an emphasis on new information obtained on excitation transfer, trapping, and communication between different portions of the photosynthetic membranes.  相似文献   

16.
The fast fluorescence decay kinetics of two photosynthetic mutants of corn (Zea mays) have been compared with those of normal corn. The fluorescence of normal corn can be resolved into three exponential decay components of lifetime 900–1500 ps (slow), 300–500 ps (middle) and 50–120 ps (fast), the yields of which are affected by light intensity and Mg2+ levels. The Photosystem II-(PS II)-defective mutant hcf-3 has similar decay lifetimes (approx. 1200, 450 and 100 ps) but is not affected by light intensity, reflecting the absence of PS II charge recombination. However, yields do respond to Mg2+ in a fashion typical of normal corn, which may be correlated with the presence of normal levels of light-harvesting chlorophyll a + b complex (LHCP). The PS I mutant hcf-50 also shows three-component decay kinetics. In conjunction with the results on the LHCP-deficient mutant of barley presented in a recent paper (Karukstis, K.K. and Sauer, K. (1984) Biochim. Biophys. Acta 766, 148–155), these data suggest that the slow component of normal chloroplasts is kinetically controlled by the decay processes of the LHCP and that the energy comes from one of two sources: (a) charge recombination in the reaction centre or (b) energy transferred within or between LHCP units only. The fast component appears to originate from both PS I and PS II. The complex response of the middle component to cations and light intensity, and its presence in all of the mutants, suggests that it also may have multiple origins.  相似文献   

17.
Kinetic and steady-state measurements of pyrene fluorescence in a variety of model membranes are evaluated in terms of the theory of collisional excimer formation. In the region of 10(-3)-0.1 M pyrene, molecular fluorescence decay in membranes is biphasic and the two component lifetimes do not depend on the pyrene concentration. The lifetime data are consistent with the rate constant for collisional excimer formation being of the order 10(6) M-1 X s-1 or less. The concentration dependence of the component amplitudes is inconsistent with the theory of collisional excimer formation and suggests that pyrene exists in two forms in membranes: a slowly diffusing monomeric form and an aggregated form. The component of molecular fluorescence decay associated with aggregated pyrene is highly correlated with steady-state excimer fluorescence, suggesting that excimer fluorescence in membranes arises from aggregated pyrene in which excimers are formed by a static rather than a collisional mechanism. It is suggested that the concentration dependence of excimer to molecular fluorescence intensity ratios in membranes is related to the equilibrium constant for exchange between monomeric and aggregated pyrene forms rather than to the collisional excimer formation rate constant.  相似文献   

18.
设施番茄果实生长与环境因子的关系   总被引:1,自引:0,他引:1  
在设施环境下,研究环境因子与番茄果实生长的关系,以期为设施番茄精准管理提供参考。以1h为步长,记录设施内温度、光照强度及空气湿度,每7d进行1次果径测定,将采集的环境数据细分为7个变量,分析7个变量与果实日增量随时间的变化,采用DPS软件进行逐步回归,建立显著环境因子与果实日增量的回归模型。春茬两个棚环境因子随时间动态变化规律较一致,秋茬日光温室与其有所不同。番茄品种'粉冠’和'金棚’果实日增量呈现先升高后降低的趋势,品种'珍琪’果实日增量变化波动较大。3个设施内影响果实日增量的显著环境因子有所不同,7个环境变量之间相互影响、相互制约。剔除不显著的环境变量后,建立了3个番茄品种果实日增量与显著环境变量的回归模型,确定了7个环境因子对果实生长的影响及果实生长适宜的环境变量范围。  相似文献   

19.
光、温湿度对柑桔木虱发育、繁殖与存活的影响   总被引:1,自引:0,他引:1  
杨余兵 《生态学报》1989,9(4):348-354
本研究结果表明,在光照强度为11000lx以下(6小时光照时为15000lx)、每天光照时间在18小时以内,光照强度越大,光照时间越长,柑桔木虱雌成虫的产卵前期越短,产卵量越大,死亡率越低。 温度为15—34℃,相对湿度为43—92%范围内,温湿度对柑桔木虱卵的孵化率影响较小。柑桔木虱若虫在高温(34℃)、高湿(85%,92%)下死亡率高;适温(20—30℃)、低湿(43—75%)下死亡率低。湿度对柑桔木虱卵及若虫发育历期影响不大。在温度为15—34℃范围内,温度与卵及若虫的发育历期呈抛物线关系。柑桔木虱卵及1—5龄若虫的发育起点温度分别是:9.41℃、8.30℃、9.72℃、8.92℃、9.61℃及9.07℃,有效积温分别是:60.03日度、39.78日度、26.82日度,33.23日度及74.49日度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号