首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that KM values for ADP when rat liver mitochondria oxidized succinate were strictly dependent on the values of the respiratory control ratios. The Ki values for palmitoyl-CoA inhibition of the ADP-stimulated succinate oxidation and the inhibition of the uncoupler-stimulated ATPase activity were equal to 0.5 μM. Mitochondria from livers of starved rats showed 30% inhibition of the state 3 respiratory rate (compared to the uncoupled respiratory rate) which was abolished by addition of carnitine. It was supposed that this inhibition was due to the influence of acyl-CoAs bound to the inner mitochondrial membrane on the adenienucleotide translocase. Mitochondria from livers of fed rats showed a strong inhibition of succinate oxidation both in state 4 and state 3, although the rate of uncoupled respiration was normal. It was assumed that in this case the changes in mitochondrial behaviour was caused by the decrease in the concentration of ADP and ATP in the matrix space of mitochondria.  相似文献   

2.
Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and -ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1–50 μM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.  相似文献   

3.
Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and alpha-ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1-50 microM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.  相似文献   

4.
Using Percoll density gradient centrifugation, free (nonsynaptosomal) mitochondria were isolated from the dorsal-lateral striatum and paramedian neocortex of rats during complete forebrain ischemia and reperfusion. Mitochondria prepared from either region after 30 min of ischemia showed decreased state 3 (ADP and substrate present) and uncoupled respiration rates (19-45% reductions) with pyruvate plus malate as substrates, whereas state 4 respiration (no ADP present) was preserved. At 6 h of recirculation, state 3 and uncoupled respiration rates for mitochondria from the paramedian neocortex (a region resistant to ischemic damage) were similar to or even increased compared with control values. By contrast, in mitochondria from the dorsal-lateral striatum (a region containing neurons susceptible to global ischemia), decreases in state 3 and uncoupled respiration rates (25 and 30% less than control values) were again observed after 6 h of recirculation. With succinate as respiratory substrate, however, no significant differences from control values were found in either region at this time point. By 24 h of recirculation, respiratory activity with either pyruvate plus malate or succinate was greatly reduced in samples from the dorsal-lateral striatum, probably reflecting complete loss of function in some organelles. In contrast with these marked changes in free mitochondria, the respiratory properties of synaptosomal mitochondria, assessed from measurements in unfractionated homogenates, were unchanged from controls in the dorsal-lateral striatum at each of the time points studied, but showed reductions (19-22%) during ischemia and after 24 h of recirculation in the paramedian neocortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Mitochondria of the amoeba Acanthamoeba castellanii possess a free fatty acid-activated uncoupling protein (AcUCP) that mediates proton re-uptake driven by the mitochondrial proton electrochemical gradient. We show that AcUCP activity diverts energy from ATP synthesis during state 3 mitochondrial respiration in a fatty acid-dependent way. The efficiency of AcUCP in mitochondrial uncoupling increases when the state 3 respiratory rate decreases as the AcUCP contribution is constant at a given linoleic acid concentration while the ATP synthase contribution decreases with respiratory rate. Respiration sustained by this energy-dissipating process remains constant at a given linoleic acid concentration until more than 60% inhibition of state 3 respiration by n-butyl malonate is achieved. The present study supports the validity of the ADP/O method to determine the actual contributions of AcUCP (activated with various linoleic acid concentrations) and ATP synthase in state 3 respiration of A.castellanii mitochondria fully depleted of free fatty acid-activated and describes how the two contributions vary when the rate of succinate dehydrogenase is decreased by succinate uptake limitation.  相似文献   

6.
L.De Jong  M. Holtrop  A.M. Kroon 《BBA》1978,501(3):405-414
Treatment of rats with thiamphenicol in a dose of 125 mg/kg per day for 60–64 h causes specific inhibition of mitochondrial protein synthesis, leading to a drastic decrease of the cytochrome c oxidase activity in intestinal epithelium. At the same time the mitochondrial ATPase activity becomes resistant to inhibition by oligomycin. Experiments with isolated intestinal mitochondria revealed that respiration in state 3 is diminished by 55% with succinate (5 mM) and by 40% with pyruvate (10 mM) plus L-malate (2 mM) as the substrates, both as compared to intestinal mitochondria isolated from control rats. P : O ratios as well as respiratory control indices are comparable in the two groups of animals. Uncoupled respiration is inhibited by 35% with succinate as the substrate, while the succinate cytochrome c reductase activity remains unaltered. No inhibition of uncoupled respiration with pyruvate plus L-malate as the substrates was observed. The ATP-Pi exchange activity in the mitochondria from the treated animals is diminished by about 75%. It is concluded that in the mitochondria of the treated animals the inhibition of the coupled respiration (state 3) is caused by the limitation of the ATP-generating capacity and that electron transport is rate limiting only with the rapidly oxidized substrates such as succinate, if respiration is uncoupled.  相似文献   

7.
The effect of a polyanion (a copolymer of methacrylate, malaete and styrene in a 1:2:3 proportion with an average molecular weight of 10 000) on respiration, ATPase activity and ADP/ATP exchange activity of rat liver mitochondria and submitochondrial particles has been studied.The polyanion (at 17–150 μg/ml concentration, 100 μg polyanion corresponding to 0.83 μequiv. of carboxylic groups) inhibits the oxidation of succinate and NAD-linked substrates in state 3 in a concentration-dependent manner. The extent of this inhibition can be decreased by elevating the concentration of ADP. State 4 respiration is not affected by the polyanion. It has also a slight inhibitory effect on the oxidation of the above mentioned substrates in the uncoupled state (a maximum inhibition of 37% at 166 μg/ml polyanion concentration), which is unaffected by ADP. The strong inhibition of state 3 respiration can be relieved by 2,4-dinitrophenol to the low level observed in the uncoupled state. Ascorbate+TMPD oxidation is slightly inhibited in state 3, while it is not inhibited at all in the uncoupled state.The polyanion, depending on its concentration, strongly inhibits also the DNP-activated ATPase activity of mitochondria (50% inhibition at 40 μg/ml polyanion concentration).The ATPase activity of sonic submitochondrial particles is also inhibited. However, this inhibition is incomplete (reaching a maximum of 65%) and higher concentrations of the polyanion are required than to inhibit the ATPase activity of intact mitochondria.The polyanion inhibits the ADP/ATP translocator activity of mitochondria, measured by the “back exchange” of [2-3H]ADP. After a short preincubation of the mitochondria with the polyanion, the concentration dependence of the inhibition by the polyanion corresponds to that of the DNP-activated ATPase activity of intact mitochondria.It is concluded that, in intact mitochondria, the polyanion has at least a dual effect, i.e. it partially inhibits the respiratory chain between cytochrome b and cytochrome c, and strongly oxidative phosphorylation by blocking the ADP/ATP translocator.  相似文献   

8.
The effects of kaempferol on the oxidative and phosphorylative properties of plant mitochondria from potato tubers and etiolated mung bean (Phaseolus aureus Roxb.) hypocotyls were investigated. Kaempferol inhibited the state 3 oxidation rate of malate, NADH, and succinate, but was without effect on the ascorbate-tetramethyl p-phenylenediamine oxidation rate. The inhibition was almost the same whether the mitochondria were in state 3 or in an uncoupled state 3. When 180 micromolar kaempferol was added during state 4, the tight coupling of succinate or NADH oxidation was not released. The results obtained indicate that kaempferol inhibits the mitochondrial electron flow at, or just after, the flavoprotein site.  相似文献   

9.
5,5'-Diphenyl-2-thiohydantoin (DPTH) administered in vitro, inhibited state 3 oxidation, stimulated state 4 oxidation and decreased ADP:O ratio when 3-hydroxybutyrate and succinate were used as substrates. Considerably lower DPTH concentrations were required for the inhibition of 3-hydroxybutyrate oxidation (50% inhibition occurred at approximately 0.17 mumoles DPTH/mg protein) than were needed for inhibition of succinate oxidation (50% inhibition occurred at about 0.62 mumoles DPTH/mg protein). DPTH showed no inhibitory effects when ascorbate plus tetramethylphenylenediamine (TMPD) served as the substrate. The inhibition of state 3 respiration was not reversed by 2,4-dinitrophenol (DNP), although there was a slight increase in the DNP rate:state 3 rate suggesting the presence of a weak DPTH inhibotory site located within the Site I energy transport chain. Uncoupling, in the presence of DPTH, was observed with all substrates. In experiments utilizing sonicated mitochondria, DPTH inhibited NADH-linked oxidation, but did not inhibit succinate or ascorbate plus TMPD oxidation. The effects of DPTH were reversed by dilution and by addition of albumin. DPTH concentrations which produced inhibition of state 3 respiration in vitro were reached, in vivo, in the livers of rats receiving a single oral dose of 40 mg/kg of DPTH.  相似文献   

10.
In isolated plant mitochondria the oxidation of both succinate and exogenous NADH responded in the expected manner to the addition of ADP or uncoupling agents, and the uncoupled rate of respiration was often in excess of the rate obtained in the presence of ADP. However, the oxidation of NAD+-linked substrates responded in a much more complex manner to the addition of ADP or uncoupling agents such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone to mitochondria oxidizing pyruvate plus malate failed to result in a reliable stimulation; this uncoupled rate could be stimulated by adding AMP or ADP in the presence of oligomycin or bongkrekic acid. Spectrophometric measurements showed that the addition of AMP or ADP resulted in the simultaneous oxidation of endogenous nicotinamide nucleotide and the reduction of cytochrome b. ADP was only effective in bringing about these changes in redox state in the presence of Mg2+ whereas AMP did not require Mg2+. It was concluded that AMP activated the flow of electrons from endogenous nicotinamide nucleotide to cytochrome b, possible at the level of the internal NADH dehydrogenase.  相似文献   

11.
Mitochondria from glucagon-treated rats oxidize succinate, but not ascorbate plus tetramethylphenylenediamine, faster in the uncoupled state than do control mitochondria. The rate of O(2) uptake in the presence of both substrates is equal to the sum of the rates of the O(2) uptake in the presence of either substrate alone. It is concluded that the mitochondrial respiratory chain is limited at some point between cytochromes b and c and that this step is regulated by glucagon. Measurement of the cytochrome spectra under uncoupled conditions in the presence of succinate and rotenone demonstrates a crossover between cytochromes c and c(1) when control mitochondria are compared with those from glucagon-treated rats, cytochrome c being more oxidized and cytochrome c(1) more reduced in control mitochondria. Under conditions where pyruvate metabolism is studied the control mitochondria are generally more oxidized than those from glucagon-treated rats, the redox state of cytochrome b-566 correlating with the rate of pyruvate metabolism in sucrose medium. However, when the redox state of the mitochondria is taken into account, a crossover between cytochromes c and c(1) is again apparent. The spectra of the b cytochromes are complex, but cytochrome b-562 appears to become more reduced relative to cytochrome b-566 in mitochondria from glucagon-treated rats than in control mitochondria. This can be explained by the existence of a more alkaline matrix in glucagon-treated rats, the redox potential for cytochrome b being pH-sensitive. It is concluded that glucagon stimulates electron flow between cytochromes c(1) and c. The physiological significance of these findings is discussed.  相似文献   

12.
R N Akhmerov 《Biofizika》1987,32(4):606-608
Isolated heart mitochondria possessing a high phosphorylation efficiency with pyruvate and malate as substrates oxidize NADH and ascorbate unassociated with ADP phosphorylation. This uncoupled pathway is expressed partially when succinate or NAD-linked substrates are oxidized. The uncoupled oxidation is likely to be the result of the presence of a mitochondrial population with the high-permeable inner membrane in intact tissues. The nature and origin of a uncoupled respiratory system and its role in the thermoproduction of endotherms are discussed.  相似文献   

13.
Mitochondria were prepared from the spadices of skunk cabbage (Symplocarpus foetidus) whose respiratory rate with succinate and malate showed 15% to 30% sensitivity to cyanide inhibition, and which showed respiratory control by added ADP. The observed respiratory control ratios ranged from 1.1 to 1.4. The change in pH of the mitochondrial suspension was recorded simultaneously with oxygen uptake: alkalinization of the medium, expected for phosphorylation of ADP, coincided with the period of acceleration in oxygen uptake caused by addition of an ADP aliquot. The ADP/O ratios obtained were 1.3 for succinate and 1.9 for malate. In the presence of 0.3 mm cyanide, the ADP/O ratio for succinate was zero, while that for malate was 0.7. These results are consistent with the existence of an alternate oxidase which interacts with the flavoprotein and pyridine nucleotide components of the respiratory chain and which, in the presence of cyanide, allows the first phosphorylation site to function with an efficiency of about 70%. In the absence of respiratory inhibitors, the efficiency of each phosphorylation site is also about 70%. This result implies that diversion of reducing equivalents through the alternate oxidase, thereby bypassing the 2 phosphorylation sites associated with the cytochrome components of these mitochondria, occurs to a negligible extent during the oxidative phosphorylation of ADP or State 3.Addition of ADP or uncoupler to skunk cabbage mitochondria respiring in the controlled state or State 4, results in reduction of cytochrome c and the oxidation of the cytochromes b, ubiquinone and pyridine nucleotide. A site of interaction of ADP with the respiratory chain between cytochromes b and cytochrome c is thereby identified by means of the crossover theorem. Flavoprotein measured by fluorescence is also oxidized upon addition of ADP or uncoupler, but flavoprotein measured by optical absorbance changes becomes more reduced under these conditions. Depletion of the mitochondria by pretreatment with ADP and uncoupler prevents reduction of most of the fluorescent flavoprotein by succinate. These results indicate that skunk cabbage mitochondria contain both high and low potential flavo-proteins characterized by different fluorescence/absorbance ratios similar to those demonstrated to be part of the respiratory chain in mitochondria from animal tissues.  相似文献   

14.
The aim of the present study was to evaluate the changes caused by adjuvant-induced arthritis in liver mitochondria and to investigate the effects of the nonsteroidal anti-inflammatory drug nimesulide. The main alterations observed in liver mitochondria from arthritic rats were: higher rates of state IV and state III respiration with beta-hydroxybutyrate as substrate; reduced respiratory control ratio and impaired capacity for swelling dependent on beta-hydroxybutyrate oxidation. No alterations were found in the activities of NADH oxidase and ATPase. Nimesulide produced: (1) stimulation of state IV respiration; (2) decrease in the ADP/O ratio and in the respiratory control ratio; (3) stimulation of ATPase activity of intact mitochondria; (4) inhibition of swelling driven by the oxidation of beta-hydroxybutyrate; (5) induction of passive swelling due to NH(3)/NH(4)+ redistribution. The activity of NADH oxidase was insensitive to nimesulide. Mitochondria from arthritic rats showed higher sensitivity to nimesulide regarding respiratory activity. The results of this work allow us to conclude that adjuvant-induced arthritis leads to quantitative changes in some mitochondrial functions and in the sensitivity to nimesulide. Direct evidence that nimesulide acts as an uncoupler was also presented. Since nimesulide was active in liver mitochondria at therapeutic levels, the impairment of energy metabolism could lead to disturbances in the liver responses to inflammation, a fact that should be considered in therapeutic intervention.  相似文献   

15.
A comparative study on the effects of antitumour antibiotics of the anthracycline group (rubomycin, carminomycin and adriamycin) on respiration and oxidative phosphorylation in liver mitochondria in various metabolic states has been carried out for the first time. It was shown that the antibiotics under study cause partial inhibition of mitochondrial state 3 respiration, which is eliminated by an uncoupler. Treatment of liver mitochondria with the antibiotics decreases the ADP/O and respiratory control values and stimulates state 4 respiration. The latter is partly inhibited by oligomycin. The uncoupled respiration is decelerated in the presence of the antibiotics. Under these conditions the oxidation of succinate is inhibited by lower concentrations of the antibiotics than that of NAD+-dependent substrates. It was shown that the maximal activity is exerted by the most polar agent carminomycin, while the hydrophobic rubomycin is the least active. The experimental results are discussed in terms of the toxic effect of antitumour antibiotics.  相似文献   

16.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

17.
NH4C1 inhibited oxygen consumption (State 3, ADP induced) by rat liver mitochondria respiring on palmitoyl-L-carnitine or octanoic acid but not on succinate or malate + glutamate. The inhibition became apparent at 0.02 mM reaching a plateau (40%) at 2 mM NH4C1. Similar inhibition was observed with uncoupled (in the presence of 2, 4-dinitrophenol) mitochondria. The inhibition of uncoupled mitochondria was reversible as the rate of respiration with palmitoyl-L-carnitine was further increased by succinate and the total rate was unaffected by NH4C1. Therefore, NH+4 inhibition of mitochondrial respiration may lead to fatty infiltration and be one of the causes of the pathophysiology in children with Reye's syndrome and disorders of urea cycle enzymes.  相似文献   

18.
Mitochondria from potato tubers have been separated from contaminating organelles and membrane vesicles on self-generated Percoll gradients and in a relatively short time. The Percoll-purified mitochondria devoid of carotenoids and galactolipids showed no contamination with intact plastids, microbodies, or vacuolar enzymes. Percoll-purified mitochondria exhibited intact membranes and a dense matrix. The intactness of purified mitochondrial preparations was ascertained by the measurement of KCN-sensitive ascorbate cyt c-dependent O2 uptake. When compared with washed mitochondria, Percoll-purified mitochondria showed improved rates of substrate oxidation, respiratory control, and ADP:O ratios. The recovery of the cyt oxidase was 70–90% and on a cyt oxidase basis the rate of succinate oxidation by unpurified mitochondria was equal to that recorded for Percoll-purified mitochondria. The great flexibility of purification procedure involving silica sols was extended from mitochondria to the isolation of intact peroxisomes.  相似文献   

19.
Sweet potato mitochondria exhibited respiratory control duringthe oxidation of malate and succinate with ADP/O ratios approachingthe theoretical P/O values. Prior to the addition of ADP themitochondria showed a considerable rate of substrate oxidation,defined as the basic respiration, which was of the same magnitudeas state 4 respiration. Electrons from state 4 and the basicrespiration were at least partially mediated by the cytochromechain, as shown by effects of cyanide, azide and amytal, andby spectrophotometric evidence. The nature of ATPase was studied and the influence of inhibitorsof ATPase activity on oxidation helped to establish the relationshipbetween the several states of oxidation and ATPase activity.The ADP/O ratio and ADP-stimulated respiration were slightlydecreased by fluoride, while state 4, the basic respirationand ATPase activity were effectively inhibited. Chlorpromazineinhibited DNP-stimulated ATPase activity, respiration uncoupledby DNP and all the states of malate oxidation. However, state4 and basic respiration were less sensitive than was state 3of malate oxidation to 0.3 mM chlorpromazine. It was concluded that mitochondrial ATPase played a role inthe basic respiration and in state 4 oxidation. 1Present address: Department of Biochemistry Tel-Aviv University,Tel-Aviv, Israel (Received August 1, 1969; )  相似文献   

20.
1. High rates of state 3 pyruvate oxidation are dependent on high concentrations of inorganic phosphate and a predominance of ADP in the intramitochondrial pool of adenine nucleotides. The latter requirement is most marked at alkaline pH values, where ATP is profoundly inhibitory. 2. Addition of CaCl(2) during state 4, state 3 (Chance & Williams, 1955) or uncoupled pyruvate oxidation causes a marked inhibition in the rate of oxygen uptake when low concentrations of mitochondria are employed, but may lead to an enhancement of state 4 oxygen uptake when very high concentrations of mitochondria are used. 3. These properties are consistent with the kinetics of the NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) from this tissue, which is activated by isocitrate, citrate, ADP, phosphate and H(+) ions, and inhibited by ATP, NADH and Ca(2+). 4. Studies of the redox state of NAD and cytochrome c show that addition of ADP during pyruvate oxidation causes a slight reduction, whereas addition during glycerol phosphate oxidation causes a ;classical' oxidation. Nevertheless, it is concluded that pyruvate oxidation is probably limited by the respiratory chain in state 4 and by the NAD-linked isocitrate dehydrogenase in state 3. 5. The oxidation of 2-oxoglutarate by swollen mitochondria is also stimulated by high concentrations of ADP and phosphate, and is not uncoupled by arsenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号