首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been reported that growth factors activate Ras through a complex of an adaptor type SH2-containing molecule, Grb2, and a Ras guanine nucleotide-releasing protein (GNRP), mSos. We report on the involvement of another adaptor molecule, CRK, in the activation of Ras. Overexpression of wild-type CRK proteins CRK-I and CRK-II enhanced the nerve growth factor (NGF)-induced activation of Ras in PC12 cells, although the basal level of GTP-bound active Ras was not altered. In contrast, mutants with a single amino acid substitution in either the SH2 or SH3 domain of the CRK-I protein inhibited the NGF-induced activation of Ras. Two GNRPs for the Ras family, mSos and C3G, were coimmunoprecipitated with the endogenous Crk proteins in PC12 cells. The association between C3G and the CRK mutants was dependent upon the presence of intact SH3. The SH2 domain of CRK bound to the SHC protein phosphorylated on tyrosine residues by NGF stimulation. The results demonstrate that, in addition to Grb2, CRK participates in signaling from the NGF receptor and that two GNRPs appear to transmit signals from these adaptor molecules to Ras.  相似文献   

2.
We reported previously that normal Huntingtin is associated with epidermal growth factor receptor (EGF) signaling complex (Liu, Y. F., Deth, C. R., and Devys, D. (1997) J. Biol. Chem. 272, 8121-8124). To investigate the potential role of normal and polyglutamine-expanded Huntingtin in the regulation of growth factor receptor-mediated cellular signaling and biological function, we stably transfected full-length Huntingtin containing 16, 48, or 89 polyglutamine repeats into PC12 cells where cellular signaling mechanisms, mediated by nerve growth factor (NGF) or EGF receptors, are well characterized. Expression of polyglutamine-expanded Huntingtin, but not normal Huntingtin, leads to a dramatic morphological change. In clones carrying the mutated Huntingtin, both NGF and EGF receptor-mediated activation of mitogen-activated protein kinase, c-Jun N-terminal kinase, and Akt are significantly attenuated, and NGF receptor-mediated neurite outgrowth is blocked. Co-immunoprecipitation studies show that the associations of NGF or EGF receptors with growth factor receptor-binding protein 2 (Grb2) and phosphoinositide 3-kinase are significantly inhibited. NGF-induced tyrosine phosphorylation of NGF receptors (TrkA) is also consistently suppressed. Our data demonstrate that polyglutamine-expanded Huntingtin disrupts cellular signaling mediated by both EGF and NGF receptors in PC12 cells. It is known that Huntington's disease patients exhibit an extremely low incidence of a variety of cancers and are deficient in glucose metabolism. Thus, our results may reflect an important molecular mechanism for the pathogenesis of the disease.  相似文献   

3.
4.
The transforming gene of the avian sarcoma virus CT10 encodes a fusion protein (p47gag-crk or v-Crk) containing viral Gag sequences fused to cellular sequences consisting primarily of Src homology regions 2 and 3 (SH2 and SH3 sequences). Here we report a novel function of v-Crk in the mammalian pheochromocytoma cell line, PC12, whereby stable expression of v-Crk induces accelerated differentiation, as assessed by induction of neurites following nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) treatment compared with the effect in native PC12 cells. Surprisingly, however, these cells also develop extensive neurite processes after epidermal growth factor (EGF) stimulation, an event which is not observed in native PC12 cells. Following EGF or NGF stimulation of the v-CrkPC12 cells, the v-Crk protein itself became tyrosine phosphorylated within 1 min. Moreover, in A431 cells or TrkA-PC12 cells, which overexpress EGF receptors and TrkA, respectively, a GST-CrkSH2 fusion protein was indeed capable of binding these receptors in a phosphotyrosine-dependent manner, suggesting that v-Crk can directly couple to receptor tyrosine kinase pathways in PC12 cells. In transformed fibroblasts, v-Crk binds to specific tyrosine-phosphorylated proteins of p130 and paxillin. Both of these proteins are also complexed to v-Crk in PC12 cells, as evidenced by their coprecipitation with v-Crk in detergent lysates, suggesting that common effector pathways may occur in both cell types. However, whereas PC12 cellular differentiation can occur solely by overexpression of the v-Src or oncogenic Ras proteins, that induced by v-Crk requires a growth factor stimulatory signal, possibility in a two-step process.  相似文献   

5.
In PC12 cells, epidermal growth factor (EGF) transiently stimulates the mitogen-activated protein (MAP) kinases, ERK1 and ERK2, and provokes cellular proliferation. In contrast, nerve growth factor (NGF) stimulation leads to the sustained activation of the MAPKs and subsequently to neuronal differentiation. It has been shown that both the magnitude and longevity of MAPK activation governs the nature of the cellular response. The activations of MAPKs are dependent upon two distinct small G-proteins, Ras and Rap1, that link the growth factor receptors to the MAPK cascade by activating c-Raf and B-Raf, respectively. We found that Ras was transiently stimulated upon both EGF and NGF treatment of PC12 cells. However, EGF transiently activated Rap1, whereas NGF stimulated prolonged Rap1 activation. The activation of the ERKs was due almost exclusively (>90%) to the action of B-Raf. The transient activation of the MAPKs by EGF was a consequence of the formation of a short lived complex assembling on the EGF receptor itself, composed of Crk, C3G, Rap1, and B-Raf. In contrast, NGF stimulation of the cells resulted in the phosphorylation of FRS2. FRS2 scaffolded the assembly of a stable complex of Crk, C3G, Rap1, and B-Raf resulting in the prolonged activation of the MAPKs. Together, these data provide a signaling link between growth factor receptors and MAPK activation and a mechanistic explanation of the differential MAPK kinetics exhibited by these growth factors.  相似文献   

6.
Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.  相似文献   

7.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

8.
SH2-B and APS are multimeric adapters that augment TrkA signaling   总被引:3,自引:0,他引:3       下载免费PDF全文
Neurotrophins influence growth and survival of sympathetic and sensory neurons through activation of their receptors, Trk receptor tyrosine kinases. Previously, we identified Src homology 2-B (SH2-B) and APS, which are structurally similar adapter proteins, as substrates of Trk kinases. In the present study, we demonstrate that both SH2-B and APS exist in cells as homopentamers and/or heteropentamers, independent of Trk receptor activation. Structure-function analyses revealed that the SH2-B multimerization domain resides within its amino terminus, which is necessary for SH2-B-mediated nerve growth factor (NGF) signaling. Overexpression of SH2-B enhances both the magnitude and duration of TrkA autophosphorylation following exposure of PC12 cells to NGF, and this effect requires the amino-terminal multimerization motif. Moreover, the amino terminus of SH2-B is necessary for TrkA/SH2-B-mediated morphological differentiation of PC12 cells. Together, these results indicate that the multimeric adapters SH2-B and APS influence neurotrophin signaling through direct modulation of Trk receptor autophosphorylation.  相似文献   

9.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

10.
The cytoplasmic regions of the receptors for epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) bind and activate phospholipase C-γ1 (PLC-γ1) and other signaling proteins in response to ligand binding outside the cell. Receptor binding by PLC-γ1 is a function of its SH2 domains and is required for growth factor-induced cell cycle progression into the S phase. Microinjection into MDCK epithelial cells and NIH 3T3 fibroblasts of a polypeptide corresponding to the noncatalytic SH2-SH2-SH3 domains of PLC-γ1 (PLC-γ1 SH2-SH2-SH3) blocked growth factor-induced S-phase entry. Treatment of cells with diacylglycerol (DAG) or DAG and microinjected inositol-1,4,5-triphosphate (IP3), the products of activated PLC-γ1, did not stimulate cellular DNA synthesis by themselves but did suppress the inhibitory effects of the PLC-γ1 SH2-SH2-SH3 polypeptide but not the cell cycle block imposed by inhibition of the adapter protein Grb2 or p21 Ras. Two c-fos serum response element (SRE)-chloramphenicol acetyltransferase (CAT) reporter plasmids, a wild-type version, wtSRE-CAT, and a mutant, pm18, were used to investigate the function of PLC-γ1 in EGF- and PDGF-induced mitogenesis. wtSRE-CAT responds to both protein kinase C (PKC)-dependent and -independent signals, while the mutant, pm18, responds only to PKC-independent signals. Microinjection of the dominant-negative PLC-γ1 SH2-SH2-SH3 polypeptide greatly reduced the responses of wtSRE-CAT to EGF stimulation in MDCK cells and to PDGF stimulation in NIH 3T3 cells but had no effect on the responses of mutant pm18. These results indicate that in addition to Grb2-mediated activation of Ras, PLC-γ1-mediated DAG production is required for EGF- and PDGF-induced S-phase entry and gene expression, possibly through activation of PKC.  相似文献   

11.
12.
Abstract: Phospholipase C γ1 (PLC-γ1) is phosphorylated on treatment of cells with nerve growth factor (NGF). To assess the role of PLC-γ1 in mediating the neuronal differentiation induced by NGF treatment, we established PC12 cells that overexpress whole PLC-γ1 (PLC-γ1PC12), the SH2-SH2-SH3 domain (PLC-γ1SH223PC12), SH2-SH2-deleted mutants (PLC-γ1ΔSH22PC12), and SH3-deleted mutants (PLC-γ1ΔSH3PC12). Overexpressed whole PLC-γ1 or the SH2-SH2-SH3 domain of PLC-γ1 stimulated cell growth and inhibited NGF-induced neurite outgrowth of PC12 cells. However, cells expressing PLC-γ1 lacking the SH2-SH2 domain or the SH3 domain had no effect on NGF-induced neuronal differentiation. Overexpression of intact PLC-γ1 resulted in a threefold increase in total inositol phosphate accumulation on treatment with NGF. However, overexpression of the SH2-SH2-SH3 domain of PLC-γ1 did not alter total inositol phosphate accumulation. To investigate whether the SH2-SH2-SH3 domain of PLC-γ1 can mediate the NGF-induced signal, tyrosine phosphorylation of the SH2-SH2-SH3 domain of PLC-γ1 on NGF treatment was examined. The SH2-SH2-SH3 domain of PLC-γ1 as well as intact PLC-γ1 could be tyrosine-phosphorylated on NGF treatment. These results indicate that the overexpressed SH2-SH2-SH3 domain of PLC-γ1 can block the differentiation of PC12 cells induced by NGF and that the inhibition appears not to be related to the lipase activity of PLC-γ1 but to the SH2-SH2-SH3 domain of PLC-γ1.  相似文献   

13.
The human proto-oncogene product c-Cbl and a similar protein in Caenorhabditis elegans (Sli-1) contain a proline-rich COOH-terminal region that binds Src homology 3 (SH3) domains of proteins such as the adapter Grb2. Cb1-Grb2 complexes can be recruited to tyrosine-phosphorylated epidermal growth factor (EGF) receptors through the SH2 domain of Grb2. Here we identify by molecular cloning a Drosophila cDNA encoding a protein (Drosophila Cbl [D-Cbl]) that shows high sequence similarity to the N-terminal region of human c-Cbl but lacks proline-rich sequences and fails to bind Grb2. Nonetheless, in COS-1 cells, expression of hemagglutinin epitope-tagged D-Cbl results in its coimmunoprecipitation with EGF receptors in response to EGF. EGF also caused tyrosine phosphorylation of D-Cbl in such cells, but no association of phosphatidylinositol 3-kinase was detected in assays using anti-p85 antibody. A point mutation in D-Cbl (G305E) that suppresses the negative regulation of LET-23 by the Cbl homolog Sli-1 in C. elegans prevented tyrosine phosphorylation of D-Cbl as well as binding to the liganded EGF receptor in COS-1 cells. Colocalization of EGF receptors with both endogenous c-Cbl or expressed D-Cbl in endosomes of EGF-treated COS-1 cells is also demonstrated by immunofluorescence microscopy. In lysates of adult transgenic Drosophila melanogaster, GST-DCbl binds to the tyrosine-phosphorylated 150-kDa torso-DER chimeric receptor. Expression of D-Cbl directed by the sevenless enhancer in intact Drosophila compromises severely the development of the R7 photoreceptor neuron. These data suggest that despite the lack of Grb2 binding sites, D-Cbl functions as a negative regulator of receptor tyrosine kinase signaling in the Drosophila eye by a mechanism that involves its association with EGF receptors or other tyrosine kinases.  相似文献   

14.
15.
SH2-B is required for nerve growth factor-induced neuronal differentiation   总被引:15,自引:0,他引:15  
Nerve growth factor (NGF) is essential for the development and survival of sympathetic and sensory neurons. NGF binds to TrkA, activates the intrinsic kinase activity of TrkA, and promotes the differentiation of pheochromocytoma (PC12) cells into sympathetic-like neurons. Several signaling molecules and pathways are known to be activated by NGF, including phospholipase Cgamma, phosphatidylinositol-3 kinase, and the mitogen-activated protein kinase cascade. However, the mechanism of NGF-induced neuronal differentiation remains unclear. In this study, we examined whether SH2-Bbeta, a recently identified pleckstrin homology and SH2 domain-containing signaling protein, is a critical signaling protein for NGF. TrkA bound to glutathione S-transferase fusion proteins containing SH2-Bbeta, and NGF stimulation dramatically increased that binding. In contrast, NGF was unable to stimulate the association of TrkA with a glutathione S-transferase fusion protein containing a mutant SH2-Bbeta(R555E) with a defective SH2 domain. When overexpressed in PC12 cells, SH2-Bbeta co-immunoprecipitated with TrkA in response to NGF. NGF stimulated tyrosyl phosphorylation of endogenous SH2-Bbeta as well as exogenously expressed GFP-SH2-Bbeta but not GFP-SH2-Bbeta(R555E). Overexpression of SH2-Bbeta(R555E) blocked NGF-induced neurite outgrowth of PC12 cells, whereas overexpression of wild type SH2-Bbeta enhanced NGF-induced neurite outgrowth. Overexpression of either wild type or mutant SH2-Bbeta(R555E) did not alter tyrosyl phosphorylation of TrkA, Shc, or phospholipase Cgamma in response to NGF or NGF-induced activation of ERK1/2, suggesting that SH2-Bbeta may initiate a previously unknown pathway(s) that is essential for NGF-induced neurite outgrowth. Taken together, these data indicate that SH2-Bbeta is a novel signaling molecule required for NGF-induced neuronal differentiation.  相似文献   

16.
In this study we initially examined the interaction between CD44v3 (a hyaluronan (HA) receptor) and Vav2 (a guanine nucleotide exchange factor) in human ovarian tumor cells (SK-OV-3.ipl cell line). Immunological data indicate that both CD44v3 and Vav2 are expressed in SK-OV-3.ipl cells and that these two proteins are physically linked as a complex in vivo. By using recombinant fragments of Vav2 and in vitro binding assays, we have detected a specific binding interaction between the SH3-SH2-SH3 domain of Vav2 and the cytoplasmic domain of CD44. In addition, we have observed that the binding of HA to CD44v3 activates Vav2-mediated Rac1 signaling leading to ovarian tumor cell migration. Further analyses indicate that the adaptor molecule, growth factor receptor-bound protein 2 (Grb2) that is bound to p185(HER2) (an oncogene product), is also associated with the CD44v3-Vav2 complex. HA binding to SK-OV-3.ipl cells promotes recruitment of both Grb2 and p185(HER2) to the CD44v3-Vav2 complex leading to Ras activation and ovarian tumor cell growth. In order to determine the role of Grb2 in CD44v3 signaling, we have transfected SK-OV-3.ipl cells with Grb2 mutant cDNAs (e.g. Delta N-Grb2 that has a deletion in the amino-terminal SH3 domain or Delta C-Grb2 that has a deletion in the carboxyl-terminal SH3 domain). Our results clearly indicate that the SH3 domain deletion mutants of Grb2 (i.e. the Delta N-Grb2 (and to a lesser extent the Delta C-Grb2) mutant) not only block their association with p185(HER2) but also significantly impair their binding to the CD44v3-Vav2 complex and inhibit HA/CD44v3-induced ovarian tumor cell behaviors. Taken together, these findings strongly suggest that the interaction of CD44v3-Vav2 with Grb2-p185(HER2) plays an important role in the co-activation of both Rac1 and Ras signaling that is required for HA-mediated human ovarian tumor progression.  相似文献   

17.
Growth factor receptor-bound protein 2 (Grb2) is an adapter protein involved in the Ras-dependent signaling pathway that plays an important role in human cancers initiated by oncogenic receptors. Grb2 is constituted by one Src homology 2 domain surrounded by two SH3 domains, and the inhibition of the interactions produced by these domains could provide an antitumor approach. In evaluating chemical libraries, to search for potential Grb2 inhibitors, it was necessary to elaborate a rapid test for their screening. We have developed, first, a batch method based on the use of an affinity column bearing a Grb2-SH3 peptide ligand to isolate highly purified Grb2. We subsequently describe a very rapid 96-well screening of inhibitors based on a simple competition between purified Grb2 and a peroxidase-coupled proline-rich peptide.  相似文献   

18.
PC12 cells interact with several growth factors (e. g. EGF, FGF, and NGF) via specific tyrosine receptor kinases, resulting in cell proliferation or neuronal differentiation. The small GTPase Ras is known to be involved in downstream signaling of these growth factor receptors. Furthermore, cell-matrix interactions mediated by integrins, as well as integrin-induced signaling, are also involved in growth factor-stimulated signal transduction in PC12 cells. In this study we determined the expression of the alpha1 integrin subunit in response to EGF and NGF in PC12 wild-type (wt) cells, and in PC12 cells overexpressing an inactive H-Ras protein (RasN17). In PC12 wt cells, alpha1 integrin expression is upregulated by EGF and NGF. Cell surface expression of alpha1beta1integrin is also enhanced in growth factor-treated cells. This upregulation leads to increased alpha1beta1-specific adhesion to collagen. In cells expressing the dominant-negative RasN17 variant, alpha1 integrin expression and alpha1beta1-specific adhesion remain unchanged in response to both growth factors.  相似文献   

19.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号