首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the presentation of incomplete cues. Storage is fast, governed by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections between them, leading to the formation of memory engrams. These memories are stored in a distributed fashion throughout connectivity matrix, and individual synaptic connections have only a small influence. Although memory-specific connections are increased in number, the total number of inputs and outputs of neurons undergo only small changes during stimulation. We find that homeostatic structural plasticity induces a specific type of “silent memories”, different from conventional attractor states.  相似文献   

2.
Our daily experiences and learnings are stored in the form of memories. These experiences trigger synaptic plasticity and persistent structural and functional changes in neuronal synapses. Recently, cellular studies of memory storage and engrams have emerged over the last decade. Engram cells reflect interconnected neurons via modified synapses. However, we were unable to observe the structural changes arising from synaptic plasticity in the past, because it was not possible to distinguish the synapses between engram cells. To overcome this barrier, dual-eGRASP (enhanced green fluorescent protein reconstitution across synaptic partners) technology can label specific synapses among multiple synaptic ensembles. Selective labeling of engram synapses elucidated their role by observing the structural changes in synapses according to the memory state. Dual-eGRASP extends cellular level engram studies to introduce the era of synaptic level studies. Here, we review this concept and possible applications of the dual-eGRASP, including recent studies that provided visual evidence of structural plasticity at the engram synapse.  相似文献   

3.
Experiencing certain events triggers the acquisition of new memories. Although necessary, however, actual experience is not sufficient for memory formation. One-trial learning is also gated by knowledge of appropriate background information to make sense of the experienced occurrence. Strong neurobiological evidence suggests that long-term memory storage involves formation of new synapses. On the short time scale, this form of structural plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the dendrite of the post-synaptic neuron. We surmise that such “axonal-dendritic overlap” (ADO) constitutes the neural correlate of background information-gated (BIG) learning. The hypothesis is based on a fundamental neuroanatomical constraint: an axon must pass close to the dendrites that are near other neurons it contacts. The topographic organization of the mammalian cortex ensures that nearby neurons encode related information. Using neural network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning. We model knowledge as associations between terms, concepts or indivisible units of thought via directed graphs. The simplest instantiation encodes each concept by single neurons. Results are then generalized to cell assemblies. The proposed mechanism results in learning real associations better than spurious co-occurrences, providing definitive cognitive advantages.  相似文献   

4.
Long-term memories are likely stored in the synaptic weights of neuronal networks in the brain. The storage capacity of such networks depends on the degree of plasticity of their synapses. Highly plastic synapses allow for strong memories, but these are quickly overwritten. On the other hand, less labile synapses result in long-lasting but weak memories. Here we show that the trade-off between memory strength and memory lifetime can be overcome by partitioning the memory system into multiple regions characterized by different levels of synaptic plasticity and transferring memory information from the more to less plastic region. The improvement in memory lifetime is proportional to the number of memory regions, and the initial memory strength can be orders of magnitude larger than in a non-partitioned memory system. This model provides a fundamental computational reason for memory consolidation processes at the systems level.  相似文献   

5.
Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in?vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes.  相似文献   

6.
Fusi S  Drew PJ  Abbott LF 《Neuron》2005,45(4):599-611
Storing memories of ongoing, everyday experiences requires a high degree of plasticity, but retaining these memories demands protection against changes induced by further activity and experience. Models in which memories are stored through switch-like transitions in synaptic efficacy are good at storing but bad at retaining memories if these transitions are likely, and they are poor at storage but good at retention if they are unlikely. We construct and study a model in which each synapse has a cascade of states with different levels of plasticity, connected by metaplastic transitions. This cascade model combines high levels of memory storage with long retention times and significantly outperforms alternative models. As a result, we suggest that memory storage requires synapses with multiple states exhibiting dynamics over a wide range of timescales, and we suggest experimental tests of this hypothesis.  相似文献   

7.
We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like “below” and “above”, “behind” and “in front of”, or “before” and “after”, etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.  相似文献   

8.
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.  相似文献   

9.
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity.  相似文献   

10.
Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain.Santiago Ramón y Cajal (1894) used the insights provided by his remarkable light microscopic observations of neurons selectively stained with the Golgi method to propose the first cellular theory of memory storage as an anatomical change in the functional connections between nerve cells, later called synapses (Sherrington 1897). For most of the last century, chemical synapses were thought to convey information in only one direction—from the presynaptic to the postsynaptic neuron. It now is clear that synaptic transmission is a bidirectional and self-modifiable form of cell–cell communication (Peters et al. 1976; Jessell and Kandel 1993). This appreciation of reciprocal signaling between pre- and postsynaptic elements is consistent with other forms of intercellular communication and provides a conceptual framework for understanding memory-induced changes in the structure of the synapse. Indeed, an increasing body of evidence suggests that trans-synaptic signaling and coordinated recruitment of pre- and postsynaptic mechanisms underlie consolidation of both implicit and explicit forms of memory storage (Marrone 2005; Hawkins et al. 2006; Bailey et al. 2008).Studies in a variety of systems have found that molecular mechanisms of consolidation and long-term storage of memory begin at the level of the synapse. Existing proteins are modified, signals are sent back to the nucleus so that specific genes are expressed, and gene products are transported back to the synapse where the local synthesis of new protein is triggered to allow for the remodeling, addition, and elimination of synapses (Bailey and Kandel 1985; Bailey et al. 1996; Kandel 2001; Bourne and Harris 2008, 2012). These structural components of synaptic plasticity are thought to represent a cellular change that contributes to both implicit and explicit memory consolidation (Greenough and Bailey 1988; Bailey and Kandel 1993; Bailey et al. 2005; Bourne and Harris 2008, 2012). The association between alterations in the structure and/or number of synapses and memory storage has led to numerous studies regarding the signaling pathways that might couple molecular changes to structural changes. In addition, parallel homeostatic mechanisms have been identified that can trigger synaptic scaling, which serves to stabilize the strengthened synapses while weakening or eliminating other synapses, thus providing specificity during memory consolidation (Bourne and Harris 2011; Schacher and Hu 2014).In this review, we compare and contrast structural changes at the synapse during both implicit and explicit memory consolidation, as well as the molecular signaling pathways that initiate the learning-induced structural changes versus those that serve to maintain these changes over time. Toward that end, we will focus on two experimental model systems and several prototypic forms of synaptic plasticity that we have worked on and that have been extensively studied as representative examples of memory storage: long-term habituation and sensitization of the gill-withdrawal reflex in Aplysia. These are examples of implicit memory consolidation and hippocampal-based long-term potentiation (LTP) and long-term depression (LTD), as candidate mechanisms for the synaptic plasticity underlying explicit memory storage in mammals. These will serve as useful points of comparison to consider similarities, differences, and still-existing limitations in our understanding of the functional significance of the structural synaptic plasticity recruited during the consolidation of both implicit and explicit forms of memory.  相似文献   

11.
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing synapses form predominantly unidirectional pairwise connections. The cause of these structural differences in excitatory synaptic microcircuits is unknown. We show that these connectivity motifs emerge in networks of model neurons, from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the impact of STDP on SD was shown in simultaneous neuronal pair recordings in vitro, the mutual interactions between STDP and SD in large networks are still the subject of intense research. Our approach combines an SD phenomenological model with an STDP model that faithfully captures long-term plasticity dependence on both spike times and frequency. As a proof of concept, we first simulate and analyze recurrent networks of spiking neurons with random initial connection efficacies and where synapses are either all short-term facilitating or all depressing. For identical external inputs to the network, and as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. We then show that the same results hold for heterogeneous networks, including both facilitating and depressing synapses. This does not contradict a recent theory that proposes that motifs are shaped by external inputs, but rather complements it by examining the role of both the external inputs and the internally generated network activity. Our study highlights the conditions under which SD-STDP might explain the correlation between facilitation and reciprocal connectivity motifs, as well as between depression and unidirectional motifs.  相似文献   

12.
In standard attractor neural network models, specific patterns of activity are stored in the synaptic matrix, so that they become fixed point attractors of the network dynamics. The storage capacity of such networks has been quantified in two ways: the maximal number of patterns that can be stored, and the stored information measured in bits per synapse. In this paper, we compute both quantities in fully connected networks of N binary neurons with binary synapses, storing patterns with coding level , in the large and sparse coding limits (). We also derive finite-size corrections that accurately reproduce the results of simulations in networks of tens of thousands of neurons. These methods are applied to three different scenarios: (1) the classic Willshaw model, (2) networks with stochastic learning in which patterns are shown only once (one shot learning), (3) networks with stochastic learning in which patterns are shown multiple times. The storage capacities are optimized over network parameters, which allows us to compare the performance of the different models. We show that finite-size effects strongly reduce the capacity, even for networks of realistic sizes. We discuss the implications of these results for memory storage in the hippocampus and cerebral cortex.  相似文献   

13.
Sensory deprivation has long been known to cause hallucinations or “phantom” sensations, the most common of which is tinnitus induced by hearing loss, affecting 10–20% of the population. An observable hearing loss, causing auditory sensory deprivation over a band of frequencies, is present in over 90% of people with tinnitus. Existing plasticity-based computational models for tinnitus are usually driven by homeostatic mechanisms, modeled to fit phenomenological findings. Here, we use an objective-driven learning algorithm to model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus. The learning algorithm maximizes the network’s output entropy by learning the feed-forward and recurrent interactions in the model. We show that the connectivity patterns and responses learned by the model display several hallmarks of early auditory neuronal networks. We further demonstrate that attenuation of peripheral inputs drives the recurrent network towards its critical point and transition into a tinnitus-like state. In this state, the network activity resembles responses to genuine inputs even in the absence of external stimulation, namely, it “hallucinates” auditory responses. These findings demonstrate how objective-driven plasticity mechanisms that normally act to optimize the network’s input representation can also elicit pathologies such as tinnitus as a result of sensory deprivation.  相似文献   

14.

Background

Synaptic plasticity underlies many aspect of learning memory and development. The properties of synaptic plasticity can change as a function of previous plasticity and previous activation of synapses, a phenomenon called metaplasticity. Synaptic plasticity not only changes the functional connectivity between neurons but in some cases produces a structural change in synaptic spines; a change thought to form a basis for this observed plasticity. Here we examine to what extent structural plasticity of spines can be a cause for metaplasticity. This study is motivated by the observation that structural changes in spines are likely to affect the calcium dynamics in spines. Since calcium dynamics determine the sign and magnitude of synaptic plasticity, it is likely that structural plasticity will alter the properties of synaptic plasticity.

Methodology/Principal Findings

In this study we address the question how spine geometry and alterations of N-methyl-D-aspartic acid (NMDA) receptors conductance may affect plasticity. Based on a simplified model of the spine in combination with a calcium-dependent plasticity rule, we demonstrated that after the induction phase of plasticity a shift of the long term potentiation (LTP) or long term depression (LTD) threshold takes place. This induces a refractory period for further LTP induction and promotes depotentiation as observed experimentally. That resembles the BCM metaplasticity rule but specific for the individual synapse. In the second phase, alteration of the NMDA response may bring the synapse to a state such that further synaptic weight alterations are feasible. We show that if the enhancement of the NMDA response is proportional to the area of the post synaptic density (PSD) the plasticity curves most likely return to the initial state.

Conclusions/Significance

Using simulations of calcium dynamics in synaptic spines, coupled with a biophysically motivated calcium-dependent plasticity rule, we find under what conditions structural plasticity can form the basis of synapse specific metaplasticity.  相似文献   

15.
Learning and memory are a key issue of current neuroscience research. Scientists from several disciplines have suggested that the processes of learning and memory are encoded via activity‐dependent changes in the strength of the synapse. As a result of this focus, a huge amount of effort has been invested in the understanding of cellular and molecular mechanisms behind these changes in synaptic efficacy. One phenomenon is that after repeated paring or high‐frequency stimulation synapses can be potentiated and that this enhancement of synaptic strength can last from hours to days (the so called long term potentiation, LTP). Apart from these functional changes it has recently been shown that structural changes at a synapse or in the number of synapses can be correlated with activity‐dependent processes involved in long‐term memory storage. A promising candidate molecule to link changes in function to changes in structure is the nerve‐growth factor BDNF (brain derived neurotrophic factor)  相似文献   

16.

Introduction

The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time.

Methods

To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks.

Results

We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between “task-positive” and “task-negative” brain networks.

Conclusions

Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.  相似文献   

17.
The synapse is the functional unit of the brain. During the last several decades we have acquired a great deal of information on its structure, molecular components, and physiological function. It is clear that synapses are morphologically and molecularly diverse and that this diversity is recruited to different functions. One of the most intriguing findings is that the size of the synaptic response in not invariant, but can be altered by a variety of homo- and heterosynaptic factors such as past patterns of use or modulatory neurotransmitters. Perhaps the most difficult challenge in neuroscience is to design experiments that reveal how these basic building blocks of the brain are put together and how they are regulated to mediate the information flow through neural circuits that is necessary to produce complex behaviors and store memories. In this review we will focus on studies that attempt to uncover the role of synaptic plasticity in the regulation of whole-animal behavior by learning and memory.The idea that learning results from changes in the strength of the synapse was first suggested by Santiago Ramon y Cajal (1894) based on insights from his anatomical studies. That modulation of synaptic connectivity is a critical mechanism of learning was incorporated into more refined models by Hebb in the 1940s and 1950s. The experimental investigation of these intriguing conjectures required the development of behavioral systems in which one could examine changes in the neuronal components of a specific behavior during or after the modification of that behavior with learning (Kandel and Spencer 1968).  相似文献   

18.
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.  相似文献   

19.
Cortical connectivity emerges from the permanent interaction between neuronal activity and synaptic as well as structural plasticity. An important experimentally observed feature of this connectivity is the distribution of the number of synapses from one neuron to another, which has been measured in several cortical layers. All of these distributions are bimodal with one peak at zero and a second one at a small number (3–8) of synapses.In this study, using a probabilistic model of structural plasticity, which depends on the synaptic weights, we explore how these distributions can emerge and which functional consequences they have.We find that bimodal distributions arise generically from the interaction of structural plasticity with synaptic plasticity rules that fulfill the following biological realistic constraints: First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth curve and/or the input-output relation of the postsynaptic neuron have to change sub-linearly (negative curvature). As most neurons show such input-output-relations, these constraints can be fulfilled by many biological reasonable systems.Given such a system, we show that the different activities, which can explain the layer-specific distributions, correspond to experimentally observed activities.Considering these activities as working point of the system and varying the pre- or postsynaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of this, the connectivity between two neurons can be controlled by activity but is also safeguarded against overly fast changes.These results indicate that the complex dynamics between activity and plasticity will, already between a pair of neurons, induce a variety of possible stable synaptic distributions, which could support memory mechanisms.  相似文献   

20.
The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the “capture” of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the “tag” is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号