首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Lactobacillus brevis is a promising lactic acid producing strain that simultaneously utilizes glucose and xylose from lignocellulosic hydrolysate without carbon catabolic repression and inhibition. The production of by-products acetic acid and ethanol has been the major drawback of this strain. Two genes, pfkA (fructose-6-phosphate kinase [PFK]) and fbaA (fructose-1,6-biphosphate aldolase [FBA]), that encode the key enzymes of the EMP/glycolytic pathway from Lactobacillus rhamnosus, were fused to the downstream of the strong promoter P32 and expressed in L. brevis s3f4 as a strategy to minimize the formation of by-products. By expressing the two enzymes, a homo-fermentative pathway for lactic acid production was constructed. The lactic acid yields achieved from glucose in the transformants were 1.12 and 1.16 mol/mol, which is higher than that of the native strain (0.74 mol/mol). However, the lactic acid yield from xylose in the transformants stayed the same as that of the native strain. Enzyme assay indicated that the activity of the foreign protein FBA in the transformants was much higher than that of the native strains, but was ten times lower than that in L. rhamnosus. This result was consistent with the metabolic flux analysis, which indicated that the conversion efficiency of the expressed PFK and FBA was somewhat low. Less than 20 % of the carbons accumulated in the form of fructose-6-phosphate were converted into glyceraldehyde-3-phosphate (GAP) by the expressed PFK and FBA. Metabolic flux analysis also indicated that the enzyme phosphoketolase (XPK) played an important role in splitting the carbon flow from the pentose phosphate pathway to the phosphoketolase pathway. This study suggested that the lactic acid yield of L. brevis could be improved by constructing a homo-fermentative pathway.  相似文献   

3.
Several enzymes involved in central carbon metabolism and gluconeogenesisplay a critical role in survival and pathogenesis of Mycobacterium tuberculosis (Mtb). The only known functional fructose 1,6-bisphosphatase (FBPase) in Mtb is encoded by the glpX gene and belongs to the Class II sub-family of FBPase. We describe herein the generation of a ΔglpX strain using homologous recombination. Although the growth profile of ΔglpX is comparable to that of wild type Mtb when grown on the standard enrichment media, its growth is dysgonic with individual gluconeogenic substrates such as oleic acid, glycerol and acetate. In mice lung CFU titers of ΔglpX were 2–3 log10 lower than the wild-type Mtb strain. The results indicate that glpX gene encodes a functional FBPase and is essential for both in vitro and in vivo growth and survival of Mtb. Loss of glpX results in significant reduction of FBPase activity but not complete abolition. These findings verify that the glpX encoded FBPase II in Mtb can be a potential target for drug discovery.  相似文献   

4.
The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΔwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΔwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΔwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence.  相似文献   

5.
Rv0363c (fba), encoding Class II fructose-bisphosphate aldolase (FBA), is one of the potential drug targets identified in our laboratory based on minimal gene set concept. The wild-type enzyme overproduction in E. coli had been reported. However, the purification procedure was relatively tedious and the yield was low. In this study, five histidine codons were introduced into the 3′ end of the amplified fba fragments. The expressed C-terminal histidine-tagged Class II FBA was produced in E. coli BL21 (DE3) and easily purified using immobilized metal affinity chromatography. The purified his-tagged FBA was characterized. Its biochemical properties were compared to the non-his-tagged enzyme purified according to the previous report. Both FBAs have similar characteristics such as native/subunit molecular mass, kinetic parameters, and temperature/pH optima and stability. The C-terminal his-tagged FBA can be a surrogate for the native enzyme and used for screening of inhibitors of FBA. This developed expression system will pave the way for high-throughput screening and crystallization studies. Moreover, in this study, a colorimetric FBA assay has been simplified to facilitate the mass screening of inhibitor of FBA.  相似文献   

6.
7.
V-ATPases are conserved ATP-driven proton pumps that acidify organelles. Yeast V-ATPase assembly and activity are glucose-dependent. Glucose depletion causes V-ATPase disassembly and its inactivation. Glucose readdition triggers reassembly and resumes proton transport and organelle acidification. We investigated the roles of the yeast phosphofructokinase-1 subunits Pfk1p and Pfk2p for V-ATPase function. The pfk1Δ and pfk2Δ mutants grew on glucose and assembled wild-type levels of V-ATPase pumps at the membrane. Both phosphofructokinase-1 subunits co-immunoprecipitated with V-ATPase in wild-type cells; upon deletion of one subunit, the other subunit retained binding to V-ATPase. The pfk2Δ cells exhibited a partial vma growth phenotype. In vitro ATP hydrolysis and proton transport were reduced by 35% in pfk2Δ membrane fractions; they were normal in pfk1Δ. In vivo, the pfk1Δ and pfk2Δ vacuoles were alkalinized and the cytosol acidified, suggestive of impaired V-ATPase proton transport. Overall the pH alterations were more dramatic in pfk2Δ than pfk1Δ at steady state and after readdition of glucose to glucose-deprived cells. Glucose-dependent reassembly was 50% reduced in pfk2Δ, and the vacuolar lumen was not acidified after reassembly. RAVE-assisted glucose-dependent reassembly and/or glucose signals were disturbed in pfk2Δ. Binding of disassembled V-ATPase (V1 domain) to its assembly factor RAVE (subunit Rav1p) was 5-fold enhanced, indicating that Pfk2p is necessary for V-ATPase regulation by glucose. Because Pfk1p and Pfk2p are necessary for V-ATPase proton transport at the vacuole in vivo, a role for glycolysis at regulating V-ATPase proton transport is discussed.  相似文献   

8.
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb''s central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.  相似文献   

9.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease worldwide. Over the course of its life cycle in vivo, Mtb is exposed to a plethora of environmental stress conditions. Temporal regulation of genes involved in sensing and responding to such conditions is therefore crucial for Mtb to establish an infection. The Rv2745c (clgR) gene encodes a Clp protease gene regulator that is induced in response to a variety of stress conditions and potentially plays a role in Mtb pathogenesis. Our isogenic mutant, Mtb:ΔRv2745c, is significantly more sensitive to in vitro redox stress generated by diamide, relative to wild-type Mtb as well as to a complemented strain. Together with the fact that the expression of Rv2745c is strongly induced in response to redox stress, these results strongly implicate a role for ClgR in the management of intraphagosomal redox stress. Additionally, we observed that redox stress led to the dysregulation of the expression of the σHE regulon in the isogenic mutant, Mtb:ΔRv2745c. Furthermore, induction of clgR in Mtb and Mtb:ΔRv2745c (comp) did not lead to Clp protease induction, indicating that clgR has additional functions that need to be elucidated. Our data, when taken together with that obtained by other groups, indicates that ClgR plays diverse roles in multiple regulatory networks in response to different stress conditions. In addition to redox stress, the expression of Rv2745c correlates with the expression of genes involved in sulfate assimilation as well as in response to hypoxia and reaeration. Clearly, the Mtb Rv2745c-encoded ClgR performs different functions during stress response and is important for the pathogenicity of Mtb in-vivo, regardless of its induction of the Clp proteolytic pathway.  相似文献   

10.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.  相似文献   

11.
Mycobacterium tuberculosis (Mtb) mutants lacking rv1411c, which encodes the lipoprotein LprG, and rv1410c, which encodes a putative efflux pump, are dramatically attenuated for growth in mice. Here we show that loss of LprG-Rv1410 in Mtb leads to intracellular triacylglyceride (TAG) accumulation, and overexpression of the locus increases the levels of TAG in the culture medium, demonstrating a role of this locus in TAG transport. LprG binds TAG within a large hydrophobic cleft and is sufficient to transfer TAG from donor to acceptor membranes. Further, LprG-Rv1410 is critical for broadly regulating bacterial growth and metabolism in vitro during carbon restriction and in vivo during infection of mice. The growth defect in mice is due to disrupted bacterial metabolism and occurs independently of key immune regulators. The in vivo essentiality of this locus suggests that this export system and other regulators of metabolism should be considered as targets for novel therapeutics.  相似文献   

12.
The amidinourea 8918 was recently reported to inhibit the type II phosphopantetheinyl transferase (PPTase) of Mycobacterium tuberculosis (Mtb), PptT, a potential drug‐target that activates synthases and synthetases involved in cell wall biosynthesis and secondary metabolism. Surprisingly, high‐level resistance to 8918 occurred in Mtb harboring mutations within the gene adjacent to pptT, rv2795c, highlighting the role of the encoded protein as a potentiator of the bactericidal action of the amidinourea. Those studies revealed that Rv2795c (PptH) is a phosphopantetheinyl (PpT) hydrolase, possessing activity antagonistic with respect to PptT. We have solved the crystal structure of Mtb's phosphopantetheinyl hydrolase, making it the first phosphopantetheinyl (carrier protein) hydrolase structurally characterized. The 2.5 Å structure revealed the hydrolases' four‐layer (α/β/β/α) sandwich fold featuring a Mn‐Fe binuclear center within the active site. A structural similarity search confirmed that PptH most closely resembles previously characterized metallophosphoesterases (MPEs), particularly within the vicinity of the active site, suggesting that it may utilize a similar catalytic mechanism. In addition, analysis of the structure has allowed for the rationalization of the previously reported PptH mutations associated with 8918‐resistance. Notably, differences in the sequences and predicted structural characteristics of the PpT hydrolases PptH of Mtb and E. coli's acyl carrier protein hydrolase (AcpH) indicate that the two enzymes evolved convergently and therefore are representative of two distinct PpT hydrolase families.  相似文献   

13.
Rv0363c (fba), encoding Class II fructose-bisphosphate aldolase (FBA), is one of the potential drug targets identified in our laboratory based on minimal gene set concept. The wild-type enzyme overproduction in E. coli had been reported. However, the purification procedure was relatively tedious and the yield was low. In this study, five histidine codons were introduced into the 3′ end of the amplified fba fragments. The expressed C-terminal histidine-tagged Class II FBA was produced in E. coli BL21 (DE3) and easily purified using immobilized metal affinity chromatography. The purified his-tagged FBA was characterized. Its biochemical properties were compared to the non-his-tagged enzyme purified according to the previous report. Both FBAs have similar characteristics such as native/subunit molecular mass, kinetic parameters, and temperature/pH optima and stability. The C-terminal his-tagged FBA can be a surrogate for the native enzyme and used for screening of inhibitors of FBA. This developed expression system will pave the way for high-throughput screening and crystallization studies. Moreover, in this study, a colorimetric FBA assay has been simplified to facilitate the mass screening of inhibitor of FBA.  相似文献   

14.
Genome-scale metabolic models (GEMs) provide a powerful framework for simulating the entire set of biochemical reactions in a cell using a constraint-based modeling strategy called flux balance analysis (FBA). FBA relies on an assumed metabolic objective for generating metabolic fluxes using GEMs. But, the most appropriate metabolic objective is not always obvious for a given condition and is likely context-specific, which often complicate the estimation of metabolic flux alterations between conditions. Here, we propose a new method, called ΔFBA (deltaFBA), that integrates differential gene expression data to evaluate directly metabolic flux differences between two conditions. Notably, ΔFBA does not require specifying the cellular objective. Rather, ΔFBA seeks to maximize the consistency and minimize inconsistency between the predicted flux differences and differential gene expression. We showcased the performance of ΔFBA through several case studies involving the prediction of metabolic alterations caused by genetic and environmental perturbations in Escherichia coli and caused by Type-2 diabetes in human muscle. Importantly, in comparison to existing methods, ΔFBA gives a more accurate prediction of flux differences.  相似文献   

15.
M. tuberculosis N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmUMtb) is a bi-functional enzyme engaged in the synthesis of two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc, catalyzed by the C- and N-terminal domains respectively. UDP-GlcNAc is a key metabolite essential for the synthesis of peptidoglycan, disaccharide linker, arabinogalactan and mycothiols. While glmU Mtb was predicted to be an essential gene, till date the role of GlmUMtb in modulating the in vitro growth of Mtb or its role in survival of pathogen ex vivo / in vivo have not been deciphered. Here we present the results of a comprehensive study dissecting the role of GlmUMtb in arbitrating the survival of the pathogen both in vitro and in vivo. We find that absence of GlmUMtb leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. Complementation studies show that the acetyl- and uridyl- transferase activities of GlmUMtb are independently essential for bacterial survival in vitro, and GlmUMtb is also found to be essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmUMtb from infected murine lungs, four weeks post infection, led to significant reduction in the bacillary load. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice resulted in significant decrease in the bacillary load. Thus our study establishes GlmUMtb as a strong candidate for intervention measures against established tuberculosis infections.  相似文献   

16.
Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdkpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdkpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdkpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.  相似文献   

17.
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets.  相似文献   

18.
The butyrate-oxidizing, proton-reducing, obligately anaerobic bacterium NSF-2 was grown in batch cocultures with either the hydrogen-oxidizing bacterium Methanospirillum hungatei PM-1 or Desulfovibrio sp. strain PS-1. Metabolism of butyrate occurred in two phases. The first phase exhibited exponential growth kinetics (phase a) and had a doubling time of 10 h. This value was independent of whether NSF-2 was cultured with a methanogen or a sulfate reducer and likely represents the maximum specific growth rate of NSF-2. This exponential growth phase was followed by a second phase with a nearly constant rate of degradation (phase b) which dominated the time course of butyrate degradation. The specific activity of H2 uptake by the hydrogen-oxidizing bacterium controlled the bioenergetic conditions of metabolism in phase b. During this phase both the Gibbs free energy (ΔG′) and the butyrate degradation rate (v) were greater for NSF-2-Desulfovibrio sp. strain PS-1 (ΔG′ = −17.0 kJ/mol; v = 0.20 mM/h) than for NSF-2-M. hungatei PM-1 (ΔG′ = −3.8 kJ/mol, v = 0.12 mM/h). The ΔG′ value remained stable and characteristic of the two hydrogen oxidizers during phase b. The stable ΔG′ resulted from the close coupling of the rates of butyrate and H2 oxidation. The addition of 2-bromoethanesulfonate to a NSF-2-methanogen coculture resulted in the total inhibition of butyrate degradation; the inhibition was relieved when Desulfovibrio sp. strain PS-1 was added as a new H2 sink. When the specific activity of H2 consumption was increased by adding higher densities of the Desulfovibrio sp. to 2-bromoethanesulfonate-inhibited NSF-2-methanogen cocultures, lower H2 pool sizes and higher rates of butyrate degradation resulted. Thus, it is the kinetic parameters of H2 consumption, not the type of H2 consumer per se, that establishes the thermodynamic conditions which in turn control the rate of fatty acid degradation. The bioenergetic homeostasis we observed in phase b was a result of the kinetics of the coculture members and the feedback inhibition by hydrogen which prevents butyrate degradation rates from reaching their theoretical Vmax.  相似文献   

19.

Background

Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport.

Results

Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice.

Conclusions

Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.  相似文献   

20.
Due to its biological characteristics bovine herpesvirus 4 (BoHV-4) has been considered as an appropriate gene delivery vector. Its genomic clone, modified as a bacterial artificial chromosome (BAC), is better genetically manipulable and can be used as an efficient gene delivery and vaccine vector. Although a large amount of data have been accumulated in vitro on this specific aspect, the same cannot be asserted for the in vivo condition. Therefore, here we investigated the fate of a recombinant BoHV-4 strain expressing luciferase (BoHV-4-A-CMVlucΔTK) after intraperitoneal or intravenous inoculation in mice, by generating a novel recombinant BoHV-4 expressing luciferase (BoHV-4-A-CMVlucΔTK) and by following the virus replication through in vivo imaging analysis. BoHV-4-A-CMVlucΔTK was first characterized in vitro where it was shown, on one hand that its replication properties are identical to those of the parental virus, and on the other that the transduced/infected cells strongly express luciferase. When BoHV-4-A-CMVlucΔTK was inoculated in mice, either intraperitoneally or intravenously, BoHV-4-A-CMVlucΔTK infection/transduction was exclusively localized to the liver, as detected by in vivo image analysis, and in particular almost exclusively in the hepatocytes, as determined by immuno-histochemistry. These data, that add a new insight on the biology of BoHV-4 in vivo, provide the first indication for the potential use of a BoHV-4-based vector in gene-transfer in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号