首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Recent molecular re-evaluation of Echinococcus granulosus, which causes cystic echinococcosis (CE), has revealed that it is not a single species, but instead consists of 5 cryptic species. Among them, E. granulosus (dog-sheep strain) is predominant (75%) followed by Echinococcus canadensis (22%). The major affected organs, in humans, are the liver (88%) and lungs (11%). Primary cerebral CE comprises less than 1% of all cases. As cerebral CE cases are rare, there are few reports with molecular confirmation of the causative species. This study reports mitochondrial gene analysis from 4 Mongolian pediatric cerebral CE cases. Molecular confirmation was obtained for 3 of the 4 cases, with all 3 cases determined to be due to E. canadensis (G6/G7) infection. None of the cases had other organ involvement. This is only the third report on the molecular identification of the Echinococcus species responsible for cerebral CE, and only the second report of E. canadensis (G6/G7) being the causative agent of cerebral CE.  相似文献   

2.
Cystic echinococcosis (CE) is a severe parasitic zoonosis caused by the metacestode of the tapeworm Echinococcus granulosus sensu lato (s.l.). The disease has a global distribution representing a significant public health concern. Based on mitochondrial DNA analysis E. granulosus s.l. has been subdivided into five species: E. granulosus sensu stricto (s.s.) (G1, G3 genotype), E. equinus (G4 genotype), E. ortleppi (G5 genotype), E. canadensis (G6-G8, G10 genotype) and E. felidis. E. granulosus s.s., and in particular G1, is the most widespread genotype and the major responsible of human CE cases worldwide. In Italy G1 genotype is higly represented with larger percentages in some hyperendemic areas such as Sardinia. Molecular studies represent a valuable tool to improve our understanding of the E. granulosus epidemiology and CE control strategies. In the present study we investigated genetic variability of E. granulosus s.s. in Sardinia. To this purpose 83 hydatid cysts were collected from different animal species including humans and the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was partially sequenced (720 bp). Nucleotide sequences from Mediterranean basin were also analyzed for comparison. The phylogenetic network revealed 30 haplotypes grouped around a predominant isolate that had been already reported from other world regions. Haplotype diversity (0.8495 ± 0.0336) and nucleotide diversity (0.003305 ± 0.002014) were similar in Sardinia respect to other Mediterranean countries. Neutrality indices obtained by Tajima's D and Fu's Fs test were significantly negative (p ≤ .01) suggesting expansion of Sardinian population. Low Fixation indices (Fst), ranging from negative values (Algeria, Greece, Spain, other part of Italy) to 0.089 (Albania, France), indicated absence of genetic differentiation, and gene flow between Sardinia and other Mediterranean countries.  相似文献   

3.
Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1–G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1–G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6–G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.  相似文献   

4.
Genetic variations in tapeworms causing cystic echinococcosis in Peru were investigated. Seventy one larval isolates collected from different intermediate hosts and geographic regions were identified by the DNA sequencing of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor 1 alpha (ef1a). The G7 genotype (E. canadensis pig strain) was found for the first time in pigs reared in the city of Lima. Echinococcus granulosus sensu stricto (sheep strain or G1) was the most prevalent in human patients, sheep, and cattle and the G6 genotype (E. canadensis camel strain) was found in goats and in one human patient. These findings may inform prevention strategies and control programs against echinococcosis in Peru.  相似文献   

5.

Background

Cystic echinococcosis (CE) is a globally distributed cestode zoonosis that causes hepatic cysts. Although Echinococcus granulosus sensu stricto (s.s.) is the major causative agent of CE worldwide, recent molecular epidemiological studies have revealed that E. canadensis is common in countries where camels are present. One such country is Mongolia.

Methodology/Principal Findings

Forty-three human hepatic CE cases that were confirmed histopathologically at the National Center of Pathology (NCP) in Ulaanbaatar (UB) were identified by analysis of mitochondrial cox 1 gene as being caused by either E. canadensis (n = 31, 72.1%) or E. granulosus s.s. (n = 12, 27.9%). The majority of the E. canadensis cases were strain G6/7 (29/31, 93.5%). Twenty three haplotypes were identified. Sixteen of 39 CE cases with data on age, sex and province of residence were citizens of UB (41.0%), with 13 of the 16 cases from UB caused by E. canadensis (G6/7) (81.3%). Among these 13 cases, nine were children (69.2%). All pediatric cases (n  =  18) were due to E. canadensis with 17 of the 18 cases (94.4%) due to strain G6/7. Serum samples were available for 31 of the 43 CE cases, with 22 (71.0%) samples positive by ELISA to recombinant Antigen B8/1 (rAgB). Nine of 10 CE cases caused by E. granulosus s.s. (90.0%) and 13 of 20 CE cases by E. canadensis (G6/7) (65.0%) were seropositive. The one CE case caused by E. canadensis (G10) was seronegative. CE cases caused by E. granulosus s.s. showed higher absorbance values (median value 1.131) than those caused by E. canadensis (G6/7) (median value 0.106) (p  =  0.0137).

Conclusion/Significance

The main species/strains in the study population were E. canadenis and E. granulossus s.s. with E. canadensis the predominant species identified in children. The reason why E. canadensis appears to be so common in children is unknown.  相似文献   

6.
The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima’s D and Fu’s Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonising alpine mammals and its mitochondrial locus has evolved without bottleneck effects.  相似文献   

7.
In December 2011, we reported an autochthonous case of Echinococcus multilocularis infection in a 42-year-old woman in Korea. The diagnosis was based on histopathological findings of the surgically resected liver cyst. In the present study, we evaluated the serological and molecular characteristics of this Korean E. multilocularis case. The patient''s serum strongly reacted with affinity-purified native Em18 and recombinant Em18 antigens (specific for E. multilocularis) but negative for recombinant antigen B8/1 (reactive for Echinococcus granulosus). In immunoaffinity chromatography, the serum also strongly reacted with E. multilocularis and only weakly positive for E. granulosus. We determined the whole nucleotide sequence of cox1 (1,608 bp) using the paraffin-embedded cystic tissue which was compared with E. multilocularis isolates from China, Japan, Kazakhstan, Austria, France, and Slovakia. The Korean case showed 99.8-99.9% similarity with isolates from Asia (the highest similarity with an isolate from Sichuan, China), whereas the similarity with European isolates ranged from 99.5 to 99.6%.  相似文献   

8.
Human cystic echinococcosis is a highly endemic zoonotic disease in the province of Neuquén, Patagonia Argentina, although a hydatid control programme has been carried out since 1970. Human infection due to Echinococcus canadensis (G6 genotype) is frequent in Neuquén. However, the reservoir for this species remains undetermined in a region where camels are absent. We investigated the fertility, viability and molecular epidemiology of hydatid cysts obtained from local goats, pigs and sheep in order to identify the possible reservoirs of E. canadensis (G6). We also analyzed isolates from infected dogs. A total of 67 isolates were identified by the DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 gene. Cysts from sheep (n = 16), goats (n = 23) and pigs (n = 18) and adult worms from 10 infected dogs were analyzed. The fertility of the hydatid cysts was 78.6%; 90.4% and 94.4% for sheep, goats and pigs, respectively. We detected E. canadensis (G6) in 21 of 23 goat samples and in 1 dog isolate, E. canadensis (G7) in all the pig isolates, E. granulosus sensu stricto (G3) in 1 sheep and the G1 genotype in 15 sheep, 2 goats and 9 dog samples. The G1 haplotypes included the common sheep strain sequence and 2 microvariants of this sequence. E. granulosus sensu stricto (G3) is described for the first time in South America. We conclude that goats act as reservoir for E. canadensis (G6) in Neuquén, and that control strategies may have to be adapted to local molecular epidemiology to improve the control of parasite transmission.  相似文献   

9.
Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.  相似文献   

10.

Background

Echinococcosis is a complex zoonosis that has domestic and sylvatic lifecycles, and a range of different intermediate and definitive host species. The complexities of its transmission and the sparse evidence on the effectiveness of control strategies in diverse settings provide significant challenges for the design of effective public health policy against this disease. Mathematical modelling is a useful tool for simulating control packages under locally specific transmission conditions to inform optimal timing and frequency of phased interventions for cost-effective control of echinococcosis. The aims of this review of 30 years of Echinococcus modelling were to discern the epidemiological mechanisms underpinning models of Echinococcus granulosus and E. multilocularis transmission and to establish the need to include a human transmission component in such models.

Methodology/Principal Findings

A search was conducted of all relevant articles published up until July 2012, identified from the PubMED, Web of Knowledge and Medline databases and review of bibliographies of selected papers. Papers eligible for inclusion were those describing the design of a new model, or modification of an existing mathematical model of E. granulosus or E. multilocularis transmission. A total of 13 eligible papers were identified, five of which described mathematical models of E. granulosus and eight that described E. multilocularis transmission. These models varied primarily on the basis of six key mechanisms that all have the capacity to modulate model dynamics, qualitatively affecting projections. These are: 1) the inclusion of a ‘latent’ class and/or time delay from host exposure to infectiousness; 2) an age structure for animal hosts; 3) the presence of density-dependent constraints; 4) accounting for seasonality; 5) stochastic parameters; and 6) inclusion of spatial and risk structures.

Conclusions/Significance

This review discusses the conditions under which these mechanisms may be important for inclusion in models of Echinococcus transmission and proposes recommendations for the design of dynamic human models of transmission. Accounting for the dynamic behaviour of the Echinococcus parasites in humans will be key to predicting changes in the disease burden over time and to simulate control strategies that optimise public health impact.  相似文献   

11.
We examined 71 faecal samples of carnivores from Queen Elizabeth National Park (QENP), Uganda, for eggs of Echinococcus species. Thirty-nine faecal samples contained taeniid eggs. For species diagnosis, DNA was isolated from a total of 1984 individual taeniid eggs. To differentiate eggs of Echinococcus felidis from other taeniid taxa (including the closely related Echinococcus granulosus sensu stricto), a restriction fragment length polymorphism (RFLP)-PCR of the mitochondrial nad1 gene was developed. As the faecal samples were taken from the environment, the host species was determined for all samples, except for one, by RFLP-PCR of the cob gene. Seven hundred and ninety-one of the 1984 eggs yielded a suitable PCR product. E. felidis was present in 34 of 47 samples from lions, none of 18 samples from leopards, and one of five samples from spotted hyenas. No Echinococcus taxon other than E. felidis was found, but three samples from lions contained eggs of Taenia regis. Two hydatid cysts of warthog origin from QENP were available for this study; molecular examination showed that one belonged to E. felidis, the other to E. granulosus (G1 strain). As a comparison of methods demonstrated that molecular diagnostic tools used for previous surveys of Echinococcus isolates in eastern Africa are not suitable to discriminate between E. felidis and E. granulosus sensu stricto, we re-examined 412 hydatid cyst samples of human, sheep, cattle, camel and goat origin from Kenya. Previous results were confirmed, as E. granulosus sensu stricto and Echinococcus canadensis G6/7 strain, but no E. felidis was found among these samples. In conclusion, we provide evidence that E. felidis is a frequent parasite of lions in Uganda, and possibly also occurs in hyenas. Additionally, we show that warthogs interact as intermediate hosts for E. felidis. We did not find evidence that E. felidis is present in eastern Africa outside conservation areas.  相似文献   

12.

Background

Echinococcus multilocularis is the source of alveolar echinococcosis, a potentially fatal zoonotic disease. This investigation assessed the presence of E. multilocularis infection in definitive hosts in the Chenaran region of Razavi Khorasan Province, northeastern Iran.

Methodology/Principal Findings

Fecal samples from 77 domestic and stray dogs and 14 wild carnivores were examined using the flotation/sieving method followed by multiplex PCR of mitochondrial genes. The intestinal scraping technique (IST) and the sedimentation and counting technique (SCT) revealed adult Echinococcus in the intestines of five of 10 jackals and of the single wolf examined. Three jackals were infected only with E. multilocularis but two, and the wolf, were infected with both E. multilocularis and E. granulosus. Multiplex PCR revealed E. multilocularis, E. granulosus, and Taenia spp. in 19, 24, and 28 fecal samples, respectively. Echinococcus multilocularis infection was detected in the feces of all wild carnivores sampled including nine jackals, three foxes, one wolf, one hyena, and five dogs (6.5%). Echinococcus granulosus was found in the fecal samples of 16.9% of dogs, 66.7% of jackals, and all of the foxes, the wolf, and the hyena. The feces of 16 (21.8%) dogs, 7 of 9 (77.8%) jackals, and all three foxes, one wolf and one hyena were infected with Taenia spp.

Conclusions/Significance

The prevalence of E. multilocularis in wild carnivores of rural areas of the Chenaran region is high, indicating that the life cycle is being maintained in northeastern Iran with the red fox, jackal, wolf, hyena, and dog as definitive hosts.  相似文献   

13.
Cystic hydatid disease in humans is caused by the zoonotic parasite Echinococcus granulosus. As an aid to control transmission of the parasite, a vaccine has been produced for prevention of infection in the parasite’s natural animal intermediate hosts. The vaccine utilizes the recombinant oncosphere protein, EG95. An investigation into the genetic variability of EG95 was undertaken in this study to assess potential antigenic variability in E. granulosus with respect to this host-protective protein. Gene-specific PCR conditions were first established to preferentially amplify the EG95 vaccine-encoding gene (designated eg95-1) from the E. granulosus genome that also contains several other EG95-related genes. The optimized PCR conditions were used to amplify eg95-1 from several parasite isolates in order to determine the protein-coding sequence of the gene. An identical eg95-1 gene was amplified from parasites showing a G1 or G2 genotype of E. granulosus. However, from isolates having a G6 or G7 genotype, a gene was amplified which had substantial nucleotide substitutions (encoding amino acid substitutions) compared with the eg95 gene family members. The amino acid substitutions of EG95 in the G6/G7 genotypes may affect the antigenicity/efficacy of the EG95 recombinant antigen against parasites of these genotypes. These findings indicate that characterization of eg95 gene family members in other strains/isolates of E. granulosus may provide valuable information about the potential for the EG95 hydatid vaccine to be effective against E. granulosus strains other than the G1 genotype.  相似文献   

14.

Background

Cystic echinococcosis (CE) caused by the Echinococcus granulosus, is a major public health problem worldwide, including India. The different genotypes of E. granulosus responsible for human hydatidosis have been reported from endemic areas throughout the world. However, the genetic characterization of E. granulosus infecting the human population in India is lacking. The aim of study was to ascertain the genotype(s) of the parasite responsible for human hydatidosis in North India.

Methodology/Principal Findings

To study the transmission patterns of E. granulosus, genotypic analysis was performed on hydatid cysts obtained from 32 cystic echinococcosis (CE) patients residing in 7 different states of North India. Mitochondrial cytochrome c oxidase subunit1 (cox1) sequencing was done for molecular identification of the isolates. Most of the CE patients (30/32) were found to be infected with hydatid cyst of either G3 (53.1%) or G1 (40.62%) genotype and one each of G5 (cattle strain) and G6 (camel strain) genotype.

Conclusions/Significance

These findings demonstrate the zoonotic potential of G1 (sheep strain) and G3 (buffalo strain) genotypes of E. granulosus as these emerged as predominant genotypes infecting the humans in India. In addition to this, the present study reports the first human CE case infected with G5 genotype (cattle strain) in an Asian country and presence of G6 genotype (camel strain) in India. The results may have important implications in the planning of control strategies for human hydatidosis.  相似文献   

15.

Background

Echinococcus granulosus is usually transmitted between canid definitive hosts and ungulate intermediate hosts.

Methodology/Principal Findings

Lesions found in the livers of ground squirrels, Spermophilus dauricus/alashanicus, trapped in Ningxia Hui Autonomous Region, an area in China co-endemic for both E. granulosus and E. multilocularis, were subjected to molecular genotyping for Echinococcus spp. DNA. One of the lesions was shown to be caused by E. granulosus and subsequently by histology to contain viable protoscoleces.

Conclusions/Significance

This is the first report of a natural infection of the ground squirrel with E. granulosus. This does not provide definitive proof of a cycle involving ground squirrels and dogs or foxes, but it is clear that there is active E. granulosus transmission occurring in this area, despite a recent past decline in the dog population in southern Ningxia.  相似文献   

16.
17.
Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus sensu lato (s.l.) is one of the most important zoonotic parasitic diseases worldwide and 10 genotypes (G1–G10) have been reported. In China, almost all the epidemiological and genotyping studies of E. granulosus s.l. are from the west and northwest pasturing areas. However, in Heilongjiang Province of northeastern China, no molecular information is available on E. granulosus s.l. To understand and to speculate on possible transmission patterns of E. granulosus s.l., we molecularly identified and genotyped 10 hydatid cysts from hepatic CE patients in Heilongjiang Province based on mitochondrial cytochrome c oxidase subunit I (cox1), cytochrome b (cytb) and NADH dehydrogenase subunit 1 (nad1) genes. Two genotypes were identified, G1 genotype (n = 6) and G7 genotype (n = 4). All the six G1 genotype isolates were identical to each other at the cox1 locus; three and two different sequences were obtained at the cytb and nad1 loci, respectively, with two cytb gene sequences not being described previously. G7 genotype isolates were identical to each other at the cox1, cytb and nad1 loci; however, the cytb gene sequence was not described previously. This is the first report of G7 genotype in humans in China. Three new cytb gene sequences from G1 and G7 genotypes might reflect endemic genetic characterizations. Pigs might be the main intermediate hosts of G7 genotype in our investigated area by homology analysis. The results will aid in making more effective control strategies for the prevention of transmission of E. granulosus s.l.  相似文献   

18.
The changes of biotransformation enzymes will substantially affect the host's ability to metabolize drugs and other xenobiotic compounds. In order to further elucidate this process and promote the development in treatment of echinococcosis, we investigated the effects of Echinococcus multilocularis infection and drug treatment on biotransformation enzymes in mouse liver. In microsomal and cytosolic fractions, from the six activities assayed, significant decrease of glutathione S-transferases (GST) activity and significant increase of 7-pentoxyresorufin (PROD) and NADPH-cytochrome P450 reductase (CPR) activity were observed in the mice infected with E. multilocularis metacestodes. In addition, after six weeks treatment of albendazole in E. multilocularis infected mice, significant decreased GST activity and significant increase of 7- ethoxyresorufin (EROD), PROD, and particularly 3-fold higher 7-methoxyresorufin (MROD) activity were observed. The 3-bromopyruvate treated mice only exhibited significantly lower GST activity. Our results demonstrate that E. multilocularis metacestodes infection can affect the activities of main hepatic biotransformation enzymes and such alterations of activity may further affect the hepatic biotransformation of xenobiotics. Moreover, albendazole and 3-bromopyruvate, the promising potential drug against Echinococcus, affected different hepatic biotransformation enzymes and may affect their metabolism. The findings will help to develop rational treatments with less side effects and promote the development of more efficient treatments against E. multilocularis.  相似文献   

19.
Cystic echinococcosis is a zoonotic parasitic disease caused by Echinococcus species. Tanzania is one of the endemic countries with cystic echinococcosis. This study focussed on identifying genotypes of Echinococcus spp. in Tanzania. We collected 7 cysts from cattle in Mwanza municipal (n=4) and Loliondo district (n=3). The cysts from Mwanza were all E. ortleppi and fertile. In contrast, the cysts from Loliondo were all E. granulosus sensu stricto and sterile. Two from the 4 cysts were a new haplotype of E. ortleppi (G5). These results can improve the preventive and control programs for humans and livestock in Tanzania. To our knowledge, this study is considered the first to identify the genotype and haplotype of Echinococcus spp. in Tanzania.  相似文献   

20.
The genetic diversity and population genetics of the Echinococcus granulosus sensu stricto complex were investigated based on sequencing of mitochondrial DNA (mtDNA). Total 81 isolates of hydatid cyst collected from ungulate animals from different geographical areas of North India were identified by sequencing of cytochrome c oxidase subunit1 (coxi) gene. Three genotypes belonging to E. granulosus sensu stricto complex were identified (G1, G2 and G3 genotypes). Further the nucleotide sequences (retrieved from GenBank) for the coxi gene from seven populations of E. granulosus sensu stricto complex covering 6 continents, were compared with sequences of isolates analysed in this study. Molecular diversity indices represent overall high mitochondrial DNA diversity for these populations, but low nucleotide diversity between haplotypes. The neutrality tests were used to analyze signatures of historical demographic events. The Tajima’s D test and Fu’s FS test showed negative value, indicating deviations from neutrality and both suggested recent population expansion for the populations. Pairwise fixation index was significant for pairwise comparison of different populations (except between South America and East Asia, Middle East and Europe, South America and Europe, Africa and Australia), indicating genetic differentiation among populations. Based on the findings of the present study and those from earlier studies, we hypothesize that demographic expansion occurred in E. granulosus after the introduction of founder haplotype particular by anthropogenic movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号