首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Herscovics A 《Biochimie》2001,83(8):757-762
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.  相似文献   

2.
Class I alpha1,2-mannosidases (glycosyl hydrolase family 47) involved in the processing of N-glycans during glycoprotein maturation have different specificities. Enzymes in the endoplasmic reticulum of yeast and mammalian cells remove a single mannose from Man(9)GlcNAc(2) to form Man(8)GlcNAc(2) isomer B (lacking the alpha1, 2-mannose residue of the middle alpha1, 3-arm), whereas other alpha1,2-mannosidases, including Golgi alpha1,2-mannosidases IA and IB, can convert Man(9)GlcNAc(2) to Man(5)GlcNAc(2). In the present work, it is demonstrated that with a single mutation in its catalytic domain (Arg(273) --> Leu) the yeast endoplasmic reticulum alpha1,2-mannosidase acquires the ability to transform Man(9)GlcNAc to Man(5)GlcNAc. High resolution proton nuclear magnetic resonance analysis of the products shows that the order of removal of mannose from Man(9)GlcNAc is different from that of other alpha1, 2-mannosidases that remove four mannose from Man(9)GlcNAc. These results demonstrate that Arg(273) is in part responsible for the specificity of the endoplasmic reticulum alpha1,2-mannosidase and that small differences in non-conserved amino acids interacting with the oligosaccharide substrate in the active site of class I alpha1, 2-mannosidases are responsible for the different specificities of these enzymes.  相似文献   

3.
4.
5.
Protein glycosylation pathways are relatively poorly characterized in insect cells. As part of an overall effort to address this problem, we previously isolated a cDNA from Sf9 cells that encodes an insect alpha1,2-mannosidase (SfManI) which requires calcium and is inhibited by 1-deoxymannojirimycin. In the present study, we have characterized the substrate specificity of SfManI. A recombinant baculovirus was used to express a GST-tagged secreted form of SfManI which was purified from the medium using an immobilized glutathione column. The purified SfManI was then incubated with oligosaccharide substrates and the resulting products were analyzed by HPLC. These analyses showed that SfManI rapidly converts Man(9)GlcNAc(2)to Man(6)Glc-NAc(2)isomer C, then more slowly converts Man(6)GlcNAc(2)isomer C to Man(5)GlcNAc(2). The slow step in the processing of Man(9)GlcNAc(2)to Man(5)GlcNAc(2)by SfManI is removal of the alpha1,2-linked mannose on the middle arm of Man(9)GlcNAc(2). In this respect, SfManI is similar to mammalian alpha1,2-mannosidases IA and IB. However, additional HPLC and(1)H-NMR analyses demonstrated that SfManI converts Man(9)GlcNAc(2)to Man(5)GlcNAc(2)primarily through Man(7)GlcNAc(2)isomer C, the archetypal Man(9)GlcNAc(2)missing the lower arm alpha1,2-linked mannose residues. In this respect, SfManI differs from mammalian alpha1,2-mannosidases IA and IB, and is the first alpha1,2-mannosidase directly shown to produce Man(7)GlcNAc(2)isomer C as a major processing intermediate.  相似文献   

6.
7.
Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.  相似文献   

8.
Like lower and higher eucaryotes, insects have alpha 1,2-mannosidases which function in the processing of N-glycans. We previously cloned and characterized an insect alpha 1,2-mannosidase cDNA and demonstrated that it encodes a member of a family of N-glycan processing alpha 1,2-mannosidases (Kawar, Z., Herscovics, A., Jarvis, D.L., 1997. Isolation and characterisation of an alpha 1,2-mannosidase cDNA from the lepidopteran insect cell line Sf9. Glycobiology 7, 433-443). These enzymes have similar protein sequences, require calcium for their activities, and are sensitive to 1-deoxymannojirimycin, but can have different substrate specificities and intracellular distributions. We recently determined the substrate specificity of the insect alpha 1,2-mannosidase, SfManI (Kawar, Z., Romero, P., Herscovics, A., Jarvis, D.L., 2000. N-glycan processing by a lepidopteran insect and 1,2-mannosidase. Glycobiology 10, 347-355). Now, we have examined the biosynthesis and subcellular localization of SfManI. We found that SfManI is partially N-glycosylated and that N-glycosylation is dramatically enhanced if the wild type sequon is changed to one that is highly utilized in a mammalian system. We also found that an SfManI-GFP fusion protein had a punctate cytoplasmic distribution in insect cells. Colocalization studies indicated that this fusion protein is localized in the Golgi apparatus, not in the endoplasmic reticulum or lysosomes. Finally, N-glycosylation had no influence over the substrate specificity or subcellular localization of SfManI.  相似文献   

9.
The process of N-glycosylation of eukaryotic proteins involves a range of host enzymes that delete or add saccharide monomers. While endoplasmic reticulum (E.R.) mannosidases cleave only one mannose to produce the Man8B isomer, an alpha-1,2-mannosidase from Trichoderma reesei can sequentially cleave all four 1,2-linked mannose sugars from a Man(9)GlcNAc(2) oligosaccharide, a feature reminiscent of the activity of Golgi mannosidases. We now report the structure of the T. reesei enzyme at 2.37 A resolution. The enzyme folds as an (alpha alpha)(7) barrel. The substrate-binding site of the T. reesei mannosidase differs appreciably from the Saccharomyces cerevisiae enzyme. In the former, shorter loops at the surface allow substrate protein to come closer to the catalytic site. There is more internal space available, so that different oligosaccharide conformations are sterically allowed in the T. reesei alpha-1,2-mannosidase.  相似文献   

10.
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.  相似文献   

11.
The yeast alpha1,2-mannosidase Mns1p is involved in N-linked oligosaccharide processing in Saccharomyces cerevisiae by converting Man9GlcNAc2 to a single isomer of Man8GlcNAc2. alpha1,2-Mannosidase is a 63 kDa type II resident membrane protein of the endoplasmic reticulum that has none of the known endoplasmic reticulum localization signals (HDEL/KDEL, KKXX, or RRXX). Using antibodies against recombinant alpha1,2-mannosidase, indirect immunofluorescence showed that alpha1,2-mannosidase localization is abnormal in rer1 cells and that the alpha1,2-mannosidase localizes in the vacuoles of rer1/deltapep4 cells whereas in wild-type and deltapep4 cells it is found in the endoplasmic reticulum. 35S-labeled cell extracts were subjected to double immunoprecipitation, first with antibodies to alpha1,2-mannosidase, then with either alpha1,2-mannosidase antibodies or antibodies to alpha1,6-mannose residues added in the Golgi. The labeled proteins were examined by autoradiography after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A significant proportion of the labeled alpha1,2-mannosidase was immunoprecipitated by alpha1,6-mannose antibodies in wild-type, deltapep4 and rer1/deltapep4 cells with endogenous levels of alpha1,2-mannosidase, and in wild-type, deltapep4, rer1 and rer1/deltapep4 cells overexpressing alpha1,2-mannosidase. The alpha1,2-mannosidase of rer1/deltapep4 cells had a slower mobility on the gels than alpha1,2-mannosidase precipitated from wild-type or deltapep4 cells, indicating increased glycosylation due to transport through the Golgi to the vacuoles. It is concluded that the endoplasmic reticulum localization of alpha1,2-mannosidase in wild-type cells depends on Rer1p for retrieval from an early Golgi compartment.  相似文献   

12.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

13.
The initial lipid-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-dolichyl pyrophosphate (Dol-PP) for N-glycan is synthesized and assembled at the membrane of the endoplasmic reticulum (ER) and subsequently transferred to a nascent polypeptide by the oligosaccharide transferase complex. We have identified an ALG3 homolog (HpALG3) coding for a dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase in the methylotrophic yeast Hansenula polymorpha. The detailed analysis of glycan structure by linkage-specific mannosidase digestion showed that HpALG3 is responsible for the conversion of Man5GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP, the first step to attach a mannose to the lipid-linked oligosaccharide in the ER. The N-glycosylation pathway of H. polymorpha has been remodeled by deleting the HpALG3 gene in the Hpoch1 null mutant strain blocked in the yeast-specific outer mannose chain synthesis and by introducing an ER-targeted Aspergillus saitoi alpha-1,2-mannosidase gene. This glycoengineered H. polymorpha strain produced glycoproteins mainly containing trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core backbone of various human-type N-glycans. The results demonstrate the high potential of H. polymorpha to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

14.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

15.
The initial steps in N-linked glycosylation involve the synthesis of a lipid-linked core oligosaccharide followed by the transfer of the core glycan to nascent polypeptides in the endoplasmic reticulum (ER). Here, we describe alg11, a new yeast glycosylation mutant that is defective in the last step of the synthesis of the Man(5)GlcNAc(2)-PP-dolichol core oligosaccharide on the cytosolic face of the ER. A deletion of the ALG11 gene leads to poor growth and temperature-sensitive lethality. In an alg11 lesion, both Man(3)GlcNAc(2)-PP-dolichol and Man(4)GlcNAc(2)-PP-dolichol are translocated into the ER lumen as substrates for the Man-P-dolichol-dependent sugar transferases in this compartment. This leads to a unique family of oligosaccharide structures lacking one or both of the lower arm alpha1,2-linked Man residues. The former are elongated to mannan, whereas the latter are poor substrates for outerchain initiation by Ochlp (Nakayama, K.-I., Nakanishi-Shindo, Y., Tanaka, A., Haga-Toda, Y., and Jigami, Y. (1997) FEBS Lett. 412, 547-550) and accumulate largely as truncated biosynthetic end products. The ALG11 gene is predicted to encode a 63.1-kDa membrane protein that by indirect immunofluorescence resides in the ER. The Alg11 protein is highly conserved, with homologs in fission yeast, worms, flies, and plants. In addition to these Alg11-related proteins, Alg11p is also similar to Alg2p, a protein that regulates the addition of the third mannose to the core oligosaccharide. All of these Alg11-related proteins share a 23-amino acid sequence that is found in over 60 proteins from bacteria to man whose function is in sugar metabolism, implicating this sequence as a potential sugar nucleotide binding motif.  相似文献   

16.
There are three mammalian Golgi alpha1,2-mannosidases, encoded by different genes, that form Man5GlcNAc2 from Man(8-9)GlcNAc2 for the biosynthesis of hybrid and complex N-glycans. Northern blot analysis and in situ hybridization indicate that the three paralogs display distinct developmental and tissue-specific expression. The physiological role of Golgi alpha1,2-mannosidase IB was investigated by targeted gene ablation. The null mice have normal gross appearance at birth, but they display respiratory distress and die within a few hours. Histology of fetal lungs the day before birth indicate some delay in development, whereas neonatal lungs show extensive pulmonary hemorrhage in the alveolar region. No significant histopathological changes occur in other tissues. No remarkable ultrastructural differences are detected between wild type and null lungs. The membranes of a subset of bronchiolar epithelial cells are stained with lectins from Phaseolus vulgaris (leukoagglutinin and erythroagglutinin) and Datura stramonium in wild type lungs, but this staining disappears in lungs from null mice. Mass spectrometry of N-glycans from different tissues shows no significant changes in global N-glycans of null mice. Therefore, only a few glycoproteins required for normal lung function depend on alpha1,2-mannosidase IB for maturation. There are no apparent differences in the expression of several lung epithelial cell and endothelial cell markers between null and wild type mice. The alpha1,2-mannosidase IB null phenotype differs from phenotypes caused by ablation of other enzymes in N-glycan biosynthesis and from other mouse gene disruptions that affect pulmonary development and function.  相似文献   

17.
In order to purify the glycosyltransferases involved in the assembly of lipid-linked oligosaccharides and to be able to study the acceptor substrate specificity of these enzymes, methods were developed to prepare and purify a variety of lipid-linked oligosaccharides, differing in the structure of the oligosaccharide moiety. Thus, Man9 (GlcNAc)2-pyrophosphoryl-dolichol was prepared by isolation and enzymatic synthesis using porcine pancreatic microsomes, while Glc3Man9(GlcNAc)2-PP-dolichol was isolated from Madin-Darby canine kidney cells. Treatment of these oligosaccharide lipids with a series of selected glycosidases led to the preparation of Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6(Man alpha 1,3)Man alpha 1,6]Man beta 1,4GlcNAc beta 1,4GlcNAc-PP-dolichol; Man alpha 1,2Man alpha 1,2Man alpha 1,3[Man alpha 1,6]Man beta 1,4GlcNAc beta 1, 4GlcNac-PP-dolichol; and Man alpha 1,6(Man alpha 1,3)Man alpha 1, 6[Man alpha 1,3]Man beta 1,4GlcNAc-beta 1,4GlcNAc-PP-dolichol. The preparation, isolation, and characterization of each of these lipid-linked oligosaccharide substrates are described.  相似文献   

18.
Three subfamilies of mammalian Class 1 processing alpha1,2-mannosidases (family 47 glycosidases) play critical roles in the maturation of Asn-linked glycoproteins in the endoplasmic reticulum (ER) and Golgi complex as well as influencing the timing and recognition for disposal of terminally unfolded proteins by ER-associated degradation. In an effort to define the structural basis for substrate recognition among Class 1 mannosidases, we have crystallized murine Golgi mannosidase IA (space group P2(1)2(1)2(1)), and the structure was solved to 1.5-A resolution by molecular replacement. The enzyme assumes an (alphaalpha)(7) barrel structure with a Ca(2+) ion coordinated at the base of the barrel similar to other Class 1 mannosidases. Critical residues within the barrel structure that coordinate the Ca(2+) ion or presumably bind and catalyze the hydrolysis of the glycone are also highly conserved. A Man(6)GlcNAc(2) oligosaccharide attached to Asn(515) in the murine enzyme was found to extend into the active site of an adjoining protein unit in the crystal lattice in a presumed enzyme-product complex. In contrast to an analogous complex previously isolated for Saccharomyces cerevisiae ER mannosidase I, the oligosaccharide in the active site of the murine Golgi enzyme assumes a different conformation to present an alternate oligosaccharide branch into the active site pocket. A comparison of the observed protein-carbohydrate interactions for the murine Golgi enzyme with the binding cleft topologies of the other family 47 glycosidases provides a framework for understanding the structural basis for substrate recognition among this class of enzymes.  相似文献   

19.
Cipollo JF  Trimble RB 《Glycobiology》2002,12(11):749-762
N-glycosylation in nearly all eukaryotes proceeds in the endoplasmic reticulum (ER) by transfer of the precursor Glc(3)Man(9)GlcNAc(2) from dolichyl pyrophosphate (PP-Dol) to consensus Asn residues in nascent proteins. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide lipid properly, and the alg12 mutant accumulates a Man(7)GlcNAc(2)-PP-Dol intermediate. We show that the Man(7)GlcNAc(2) released from alg12Delta-secreted invertase is Manalpha1,2Manalpha1,2Manalpha1,3(Manalpha1,2Manalpha1,3Manalpha1,6)-Manbeta1,4-GlcNAcbeta1-4GlcNAcalpha/beta, confirming that the Man(7)GlcNAc(2) is the product of the middle-arm terminal alpha1,2-mannoslytransferase encoded by the ALG9 gene. Although the ER glucose addition and trimming events are similar in alg12Delta and wild-type cells, the central-arm alpha1,2-linked Man residue normally removed in the ER by Mns1p persists in the alg12Delta background. This confirms in vivo earlier in vitro experiments showing that the upper-arm Manalpha1,2Manalpha1,6-disaccharide moiety, missing in alg12Delta Man(7)GlcNAc(2), is recognized and required by Mns1p for optimum mannosidase activity. The presence of this Man influences downstream glycan processing by reducing the efficiency of Ochlp, the cis-Golgi alpha1,6-mannosyltransferase responsible for initiating outer-chain mannan synthesis, leading to hypoglycosylation of external invertase and vacuolar protease A.  相似文献   

20.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号