首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fundamental control point in the regulation of the initiation of protein synthesis is the formation of the eukaryotic initiation factor 4F (eIF-4F) complex. The formation of this complex depends upon the availability of the mRNA cap binding protein, eIF-4E, which is sequestered away from the translational machinery by the tight association of eIF-4E binding proteins (4E-BPs). Phosphorylation of 4E-BP1 is critical in causing its dissociation from eIF-4E, leaving 4E available to form translationally active eIF-4F complexes, switching on mRNA translation. In this report, we provide the first evidence that the phosphorylation of 4E-BP1 increases during mitosis and identify Ser-65 and Thr-70 as phosphorylated sites. Phosphorylation of Thr-70 has been implicated in the regulation of 4E-BP1 function, but the kinase phosphorylating this site was unknown. We show that the cyclin-dependent kinase, cdc2, phosphorylates 4E-BP1 at Thr-70 and that phosphorylation of this site is permissive for Ser-65 phosphorylation. Crucially, the increased phosphorylation of 4E-BP1 during mitosis results in its complete dissociation from eIF-4E.  相似文献   

2.
We define a novel mechanism by which integrins regulate growth factor expression and the survival of carcinoma cells. Specifically, we demonstrate that the alpha 6 beta 4 integrin enhances vascular endothelial growth factor (VEGF) translation in breast carcinoma cells. The mechanism involves the ability of this integrin to stimulate the phosphorylation and inactivation of 4E-binding protein (4E-BP1), a translational repressor that inhibits the function of eukaryotic translation initiation factor 4E (eIF-4E). The regulation of 4E-BP1 phosphorylation by alpha 6 beta 4 derives from the ability of this integrin to activate the PI-3K-Akt pathway and, consequently, the rapamycin-sensitive kinase mTOR that can phosphorylate 4E-BP1. Importantly, we show that this alpha 6 beta 4-dependent regulation of VEGF translation plays an important role in the survival of metastatic breast carcinoma cells by sustaining a VEGF autocrine signaling pathway that involves activation of PI-3K and Akt. These findings reveal that integrin-mediated activation of PI-3K-Akt is amplified by integrin-stimulated VEGF expression and they provide a mechanism that substantiates the reported role of alpha 6 beta 4 in carcinoma progression.  相似文献   

3.
Thephosphorylation states of three proteins implicated in the action ofinsulin on translation were investigated, i.e., 70-kDa ribosomalprotein S6 kinase (p70S6k),eukaryotic initiation factor (eIF) 4E, and the eIF-4E binding protein4E-BP1. Addition of insulin caused a stimulation of protein synthesisin L6 myoblasts in culture, an effect that was blocked by inhibitors ofphosphatidylinositide-3-OH kinase (wortmannin), p70S6k (rapamycin), andmitogen-activated protein kinase (MAP kinase) kinase (PD-98059). Thestimulation of protein synthesis was accompanied by increasedphosphorylation of p70S6k, aneffect that was blocked by rapamycin and wortmannin but not PD-98059.Insulin caused dephosphorylation of eIF-4E, an effect that appeared tobe mediated by the p70S6kpathway. Insulin also stimulated phosphorylation of 4E-BP1 as well asdissociation of the 4E-BP1 · eIF-4E complex. Bothrapamycin and wortmannin completely blocked the insulin-induced changes in 4E-BP1 phosphorylation and association of 4E-BP1 and eIF-4E; PD-98059 had no effect on either parameter. Finally, insulin stimulated formation of the active eIF-4G · eIF-4E complex, aneffect that was not prevented by any of the inhibitors. Overall, theresults suggest that insulin stimulates protein synthesis in L6myoblasts in part through utilization of both thep70S6k and MAP kinase signaltransduction pathways.

  相似文献   

4.
One of the critical responses to insulin treatment is the stimulation of protein synthesis through induced phosphorylation of the eIF-4E-binding protein 1 (4E-BP1), and the subsequent release of the translation initiation factor, eIF-4E. Here we report that ATM, the protein product of the ATM gene that is mutated in the disease ataxia telangiectasia, phosphorylates 4E-BP1 at Ser 111 in vitro and that insulin treatment induces phosphorylation of 4E-BP1 at Ser 111 in vivo in an ATM-dependent manner. In addition, insulin treatment of cells enhances the specific kinase activity of ATM. Cells lacking ATM kinase activity exhibit a significant decrease in the insulin-induced dissociation of 4E-BP1 from eIF-4E. These results suggest an unexpected role for ATM in an insulin-signalling pathway that controls translation initiation. Through this mechanism, a lack of ATM activity probably contributes to some of the metabolic abnormalities, such as poor growth and insulin resistance, reported in ataxia telangiectasia cells and patients with ataxia telangiectasia.  相似文献   

5.
In resting cells, eIF4E-binding protein 1 (4E-BP1) binds to the eukaryotic initiation factor-4E (eIF-4E), preventing formation of a functional eIF-4F complex essential for cap-dependent initiation of translation. Phosphorylation of 4E-BP1 dissociates it from eIF-4E, relieving the translation block. Studies suggested that insulin- or growth factor-induced 4E-BP1 phosphorylation is mediated by phosphatidylinositol 3-kinase (PI3-kinase) and its downstream protein kinase, Akt. In the present study we demonstrated that UVB induced 4E-BP1 phosphorylation at multiple sites, Thr-36, Thr-45, Ser-64, and Thr-69, leading to dissociation of 4E-BP1 from eIF-4E. UVB-induced phosphorylation of 4E-BP1 was blocked by p38 kinase inhibitors, PD169316 and SB202190, and MSK1 inhibitor, H89, but not by mitogen-activated protein kinase kinase inhibitors, PD98059 or U0126. The PI3-kinase inhibitor, wortmannin, did not block UVB-induced 4E-BP1 phosphorylation, but blocked both UVB- and insulin-induced activation of PI3-kinase and phosphorylation of Akt. 4E-BP1 phosphorylation was blocked in JB6 Cl 41 cells expressing a dominant negative p38 kinase or dominant negative MSK1, but not in cells expressing dominant negative ERK2, JNK1, or PI3-kinase p85 subunit. Our results suggest that UVB induces phosphorylation of 4E-BP1, leading to the functional dissociation of 4E-BP1 from eIF-4E. The p38/MSK1 pathway, but not PI3-kinase or Akt, is required for mediating the UVB-induced 4E-BP1 phosphorylation.  相似文献   

6.
7.
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.  相似文献   

9.
Maintenance of cellular protein stores in skeletal muscle depends on a tightly regulated synthesis-degradation equilibrium that is conditionally modulated under an extensive range of physiological and pathophysiological circumstances. Recent studies have established the initiation phase of mRNA translation as a pivotal site of regulation for global rates of protein synthesis, as well as a site through which the synthesis of specific proteins is controlled. The protein synthetic pathway is exquisitely sensitive to the availability of hormones and nutrients and employs a comprehensive integrative strategy to interpret the information provided by hormonal and nutritional cues. The translational repressor, eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and the 70-kDa ribosomal protein S6 kinase (S6K1) have emerged as important components of this strategy, and together they coordinate the behavior of both eukaryotic initiation factors and the ribosome. This review discusses the role of 4E-BP1 and S6K1 in translational control and outlines the mechanisms through which hormones and nutrients effect changes in mRNA translation through the influence of these translational effectors.  相似文献   

10.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation.  相似文献   

11.
Four initiation factors (eIF-2, -3, -4B, and -4F), previously shown to be phosphorylated in vivo, are each phosphorylated to a significant extent in vitro (greater than 0.3 mol of phosphate/mol of factor) by at least three different protein kinases. An S6 kinase from liver, an active form of protease-activated kinase II which modifies the same sites on S6 as those phosphorylated in vivo in response to mitogens, phosphorylates the beta subunit of eIF-2, eIF-3 (p120-p130), eIF-4B, and eIF-4F (p220). The Ca2+, phospholipid-dependent protein kinase phosphorylates eIF-2 beta, eIF-3 (p170, p120-p130), eIF-4B, and eIF-4F (p220, p25). The cAMP-dependent protein kinase significantly modifies eIF-4B and, to a lesser extent, eIF-3 (p130). Casein kinase I incorporates phosphate only into eIF-4B, but to a limited extent. Casein kinase II phosphorylates eIF-2 beta, eIF-3 (p170, p120), and eIF-4B, while protease-activated kinase I modifies eIF-3 (p170, p120-p130), eIF-4B, and eIF-4F (p220). The mitogen-stimulated S6 kinase from 3T3-L1 cells, activated in response to insulin, does not phosphorylate any of the initiation factors. There is no significant incorporation of phosphate into eIF-2 alpha or -gamma, eIF-4A, eIF-4C, eIF-4D, EF-1, or EF-2 by any of the protein kinases examined. Phosphopeptide mapping of tryptic digests of the phosphorylated subunits shows that the individual protein kinases modify different sites. The sites phosphorylated in vitro reflect those modified in vivo as shown with eIF-4F in concomitant studies with reticulocytes treated with tumor-promoting phorbol ester (Morley, S.J., and Traugh, J. A. J. Biol. Chem., in press). Thus, we have identified multipotential protein kinases which modify four initiation factors phosphorylated in vivo and have shown that phosphorylation of these translational components can be coordinately regulated.  相似文献   

12.
Eukaryotic translation initiation factor 4E (eIF-4E), which possesses cap-binding activity, functions in the recruitment of mRNA to polysomes as part of a three-subunit complex, eIF-4F (cap-binding complex). eIF-4E is the least abundant of all translation initiation factors and a target of growth regulatory pathways. Recently, two human cDNAs encoding novel eIF-4E-binding proteins (4E-BPs) which function as repressors of cap-dependent translation have been cloned. Their interaction with eIF-4E is negatively regulated by phosphorylation in response to cell treatment with insulin or growth factors. The present study aimed to characterize the molecular interactions between eIF-4E and the other subunits of eIF-4F and to similarly characterize the molecular interactions between eIF-4E and the 4E-BPs. A 49-amino-acid region of eIF-4 gamma, located in the N-terminal side of the site of cleavage by Picornaviridae protease 2A, was found to be sufficient for interacting with eIF-4E. Analysis of deletion mutants in this region led to the identification of a 12-amino-acid sequence conserved between mammals and Saccharomyces cerevisiae that is critical for the interaction with eIF-4E. A similar motif is found in the amino acid sequence of the 4E-BPs, and point mutations in this motif abolish the interaction with eIF-4E. These results shed light on the mechanisms of eIF-4F assembly and on the translational regulation by insulin and growth factors.  相似文献   

13.
Tee AR  Tee JA  Blenis J 《FEBS letters》2004,564(1-2):58-62
Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) represses translation initiation by binding to eukaryotic initiation factor 4E (eIF4E). 4E-BP1 also binds to the eIF4E homologous protein (4EHP). We show that eIF4E-binding mutants of 4E-BP1 (Y54A and L59A) fail to form heterodimeric complexes with wild-type 4EHP. In addition, the W95A mutant of 4EHP, similar to a homologous mutation in eIF4E, inhibits its binding to wild-type 4E-BP1. Interestingly, 4EHP over-expression instigates a negative feedback loop that inhibits upstream signaling to 4E-BP1 and ribosomal protein S6 kinase 1 (S6K1) whereas the 4E-BP1-binding-deficient mutant of 4EHP(W95A) was unable to trigger this feedback loop. Thus, the interaction of 4EHP with 4E-BP1 is necessary for this observed impaired signaling to 4E-BP1 and S6K1.  相似文献   

14.
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.  相似文献   

15.
Incubation of hepatocytes under hypoxia increases binding of translation initiation factor eIF-4E to its inhibitory regulator 4E-BP1, and this correlates with dephosphorylation of 4E-BP1. Rapamycin induced the same effect in aerobic cells but no additive effect was observed when hypoxic cells were treated with rapamycin. This enhanced association of 4E-BP1 with eIF-4E might be mediated by mTOR. Nevertheless, only hypoxia produces a rapid inhibition of protein synthesis. Although hypoxia might be signalling via the rapamycin-sensitive pathway by changing eIF-4E availability, such a pathway is unlikely to be responsible for the depression in overall protein synthesis under hypoxia.  相似文献   

16.
Walsh D  Perez C  Notary J  Mohr I 《Journal of virology》2005,79(13):8057-8064
As a viral opportunistic pathogen associated with serious disease among the immunocompromised and congenital defects in newborns, human cytomegalovirus (HCMV) must engage the translational machinery within its host cell to synthesize the viral proteins required for its productive growth. However, unlike many viruses, HCMV does not suppress the translation of host polypeptides. Here, we examine how HCMV regulates the cellular cap recognition complex eIF4F, a critical component of the cellular translation initiation apparatus that recruits the 40S ribosome to the 5' end of the mRNA. This study establishes that the cap binding protein eIF4E, together with the translational repressor 4E-BP1, are both phosphorylated early in the productive viral growth cycle and that the activity of the cellular eIF4E kinase, mnk, is critical for efficient viral replication. Furthermore, HCMV replication also induces an increase in the overall abundance of eIF4F components and promotes assembly of eIF4F complexes. Notably, increasing the abundance of select eIF4F core components and associated factors alters the ratio of active eIF4F complexes in relation to the 4E-BP1 translational repressor, illustrating a new strategy through which members of the herpesvirus family enhance eIF4F activity during their replicative cycle.  相似文献   

17.
Rapamycin-insensitive regulation of 4e-BP1 in regenerating rat liver   总被引:4,自引:0,他引:4  
In cultured cells, growth factor-induced phosphorylation of two translation modulators, p70 S6 kinase and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), is blocked by nanomolar concentrations of the immunosuppressant rapamycin. Rapamycin also attenuates liver regeneration after partial hepatectomy, but it is not known if this growth-suppressive effect is due to dephosphorylation of p70 S6 kinase and/or 4E-BP1. We found that partial hepatectomy induced a transient increase in liver p70 S6 kinase activity and 4E-BP1 phosphorylation as compared with sham-operated rats. The amount of p70 S6 kinase protein in regenerating liver did not increase, but active kinase from partially hepatectomized animals was highly phosphorylated. Phosphorylated 4E-BP1 from regenerating liver was unable to form an inhibitory complex with initiation factor 4E. Rapamycin blocked the activation of p70 S6 kinase in response to partial hepatectomy in a dose-dependent manner, but 4E-BP1 phosphorylation was not inhibited. By contrast, functional phosphorylation of 4E-BP1 induced by injection of cycloheximide or growth factors was partially reversed by the drug. The mammalian target of rapamycin (mTOR) has been proposed to directly phosphorylate 4E-BP1. Western blot analysis using phospho-specific antibodies showed that phosphorylation of Thr-36/45 and Ser-64 increased in response to partial hepatectomy in a rapamycin-resistant manner. Thus, rapamycin inhibits p70 S6 kinase activation and liver regeneration, but not functional phosphorylation of 4E-BP1, in response to partial hepatectomy. These results indicate that the effect of rapamycin on 4E-BP1 function in vivo can be significantly different from its effect in cultured cells.  相似文献   

18.
19.
20.
Exposure of quiescent, serum-starved 3T3-L1 cells to insulin promotes phosphorylation of initiation factors eIF-4F, eIF-4B, and eIF-3 p120, as well as ribosomal protein S6. Phosphorylation of both the p25 and p220 subunits of eIF-4F is stimulated typically by 2.5-5-fold, with a 2-4-fold increase in phosphorylation of eIF-4B and eIF-3 p120. Optimal stimulation is observed by 10(-9) M insulin. A similar pattern of stimulation is seen upon treatment of 3T3-L1 cells with 1 x 10(-6) M phorbol 12-myristate 13-acetate (PMA). Two-dimensional phosphopeptide mapping of p25, isolated from quiescent, insulin- or PMA-stimulated cells, results in a single tryptic phosphopeptide, indicating a single phosphorylation site identical to that obtained with protein kinase C. A more complex phosphopeptide map is observed with the p220 subunit. Following PMA-stimulation of 3T3-L1 cells, phosphopeptide mapping of p220 results in a pattern similar to that observed in vitro with Ca2+/phospholipid-dependent protein kinase (protein kinase C). Following insulin stimulation, mapping of p220 results in the appearance of novel peptides. Upon prolonged exposure to PMA, the cells are no longer responsive to this mitogen and no stimulation of phosphorylation of eIF-4F, eIF-4b, eIF-3 p120, or S6 via a protein kinase C-dependent mechanism is observed. Addition of insulin to these down-regulated cells leads to stimulation of phosphorylation of eIF-4F p220, ribosomal protein S6, and to a lesser extent, eIF-4B; little or no stimulation of phosphorylation of eIF-4F p25 and eIF-3 p120 is observed. Thus, eIF-4F p220, eIF-4B and ribosomal protein S6 are phosphorylated via PMA-dependent and insulin-dependent pathways, whereas phosphorylation of eIF-4F p25 and eIF-3 p120 is stimulated only upon activation of protein kinase C. Phosphopeptide maps of eIF-4F p220 and ribosomal protein S6 suggest that protease-activated kinase II is one of the protein kinases involved in the insulin-stimulated response in protein kinase C-depleted cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号