首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diapause and cold tolerance are essential for temperate insects to pass the winter, with the mechanisms controlling these two traits varying considerably among insects. In the present study, diapause and cold tolerance are compared among three Leptopilina species: Leptopilina japonica Novkovi? & Kimura, Leptopilina victoriae Nordlander and Leptopilina ryukyuensis Novkovi? & Kimura, all larval parasitoids of frugivorous drosophilid flies, with the aim of understanding their climatic adaptations. The first species is divided into the temperate (Leptopilina japonica japonica) and subtropical subspecies (Leptopilina japonica formosana), and the latter two species are distributed in the tropical and subtropical regions. The temperate subspecies of L. japonica enters prepupal diapause at low temperatures (15 or 18 °C), irrespective of photoperiod, and some individuals enter diapause when exposed to 0 °C for 1 or 2 day(s) or when placed at low humidity. Leptopilina victoriae also shows signs of diapause initiation at 15 °C, although L. ryukyuensis and L. j. formosana from the subtropical regions do not. Preimaginal viability at low temperature (13, 14 or 15 °C) is usually lower in L. victoriae from the tropical regions compared with L. japonica or L. ryukyuensis from the temperate or subtropical regions. Diapausing prepupae of the temperate subspecies appear to be cold tolerant. However, the cold tolerance of nondiapausing prepupae, pupae and adult females varies little among the tropical, subtropical and temperate species or subspecies, and adult males of the temperate subspecies of L. japonica are less cold tolerant than those of the tropical or subtropical species or subspecies. Cold tolerance may be unnecessary, except for diapausing individuals of the temperate species, because nondiapausing individuals appear in warmer seasons.  相似文献   

2.
CHILL-COMA TOLERANCE, A MAJOR CLIMATIC ADAPTATION AMONG DROSOPHILA SPECIES   总被引:2,自引:1,他引:1  
Abstract.— Most drosophilid species can be classified either as temperate or tropical. Adults of species were submitted to a cold treatment (0°C) and then brought back to ambient temperature. They generally exhibited a chill coma and the time needed to recover was measured. We found in a set of 26 temperate species that recovery was rapid (average 1.8 min, range 0.15–4.9). In contrast, a long recovery time (average 56 min, range 24–120) was observed for 48 tropical species. A few species, like Drosophila melanogaster, are cosmopolitan and can proliferate under temperate and tropical climates. In 9 of 10 such species, slight genetic differences were found: a shorter recovery in temperate than in tropical populations. Comparing physiological data to phylogeny suggests that chill‐coma tolerance has been a recurrent adaptation that is selected for in cold climates but tends to disappear under a permanently warm environment. This major climatic adaptation, evidenced in drosophilids, seems to occur in other insect groups also.  相似文献   

3.
We tested the hypothesis that the lack of metabolic thermal acclimation ability in tropical and subtropical amphibians is dependent on season and investigated the effects of body size, sex, time of day, and season on metabolic rates in Rana latouchii. The males were acclimated at 15 degrees, 20 degrees, and 25 degrees C, and their oxygen consumption was measured at 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in all four seasons, with the exception that we did not measure oxygen consumption at 30 degrees C in winter frogs. We also acclimated the males at 30 degrees C in summer for investigating diel variation of metabolic rate. The females were acclimated at 20 degrees and 25 degrees C, and their oxygen consumption was measured at 15 degrees , 20 degrees , 25 degrees , and 30 degrees C in summer. Our results showed that metabolic rates of R. latouchii differed by time of day, season, and acclimation temperature but did not differ by sex if the results were adjusted for differences in body mass. Summer males exhibited a 26%-48% increase in metabolic rates from the lowest values in the seasons. There was a trend of increased oxygen consumption in cold-acclimated males, but it was significant only at 15 degrees and 25 degrees C in summer, autumn, and winter. These results support the hypothesis that thermal acclimation of metabolism is seasonally dependent, which has not been reported in other tropical and subtropical amphibians.  相似文献   

4.
Aim Comparative responses of Nothofagus species to water deficits were studied to determine whether rainfall regimes could limit the latitudinal ranges of tropical and temperate forest species. Location The study species are native to New Guinea, New Caledonia, Australia, New Zealand, Chile and Argentina. Methods Seedlings of Nothofagus species from a broad latitudinal range were grown in a common environment. Changes in conductance, relative water content and water potential were measured in detached shoots, and together with measurements of tissue injury and biomass allocation, were compared between tropical and temperate species. Results Differences in responses to water deficits between tropical and temperate species appear to reflect differences in climate regimes. In particular, species native to ever‐wet rainfall regimes in New Guinea, where water deficits are generally likely to be short‐lived, were effective at conserving water by reduced stomatal conductance. In contrast, high‐latitude evergreen species on average showed greater development of traits that should enhance water uptake. This was particularly evident in Nothofagus cunninghamii from southern Australia, which developed low water potentials at moderate levels of tissue water deficit and higher root:leaf biomass than tropical species, potentially allowing carbon assimilation to be maximized during warmer, but drier, summer months. However, water relations varied among high‐latitude species. In particular, deciduous species on average showed higher rates of conductance, even during moderate levels of tissue water deficit, than evergreen species. Main conclusions The tropical species appear to conserve water during periods of water deficit (relative to temperate species), which is unlikely to have substantial opportunity costs for growth in ever‐wet climates. However, spread of tropical species to higher latitudes may be limited by water conservation strategies that limit carbon gain in climates in which temperature seasonality is often paired with drier summers. Evergreen species from high latitudes, such as N. cunninghamii, commonly showed traits that should increase water uptake. However, this strategy, while probably maximizing growth in temperate climates with cool winters and drier summers, must limit competitiveness at lower latitudes in summer‐wet climates. We conclude that responses to water regimes may make a significant contribution to the latitudinal limits of some evergreen rain forest species.  相似文献   

5.
Kimura MT 《Oecologia》2004,140(3):442-449
The relation between thermal tolerance and latitudinal distribution was studied with 30 drosophilid species collected from the cool-temperate region (Sapporo), the warm-temperate region (Tokyo and Kyoto) and the subtropical region (Iriomote island) in Japan. In addition, intraspecific variation was examined for five species collected from two localities. The subtropical strains of Scaptodrosophila coracina, Drosophila bizonata and D. daruma were less tolerant to cold than their temperate strains. However, the difference of cold tolerance between these two geographic strains was much smaller than the difference between the species restricted to the subtropical region and those occurring in the temperate region. In D. auraria and D. suzukii, no difference was observed in thermal tolerance between their cool- and warm-temperate strains. Thus, geographic variation in thermal tolerance within species was low or negligible. Interspecific comparisons by phylogenetic independent contrasts revealed that species which had the northern boundaries of their distributions at higher latitudes were generally more tolerant to cold than those which had their boundaries at lower latitudes. However, the data for some species did not agree with this trend. The use of man-protected warm places for overwintering, competition or predation would also affect their distributions. It also appeared that species which had their southern boundaries at higher latitudes were generally more cold-tolerant. The acquisition of cold tolerance may lower a flys capacity to compete, survive or reproduce in warmer climates. On the other hand, no relation was observed between heat tolerance and latitudinal distribution. Heat tolerance was higher in species inhabiting openlands or the forest canopy than in those inhabiting the forest understorey.  相似文献   

6.
We analyze phylogenetic relationships among temperate, subtropical highland, and subtropical lowland species of the Drosophila takahashii and montium species subgroups based on sequence data of COI and Gpdh genes and discuss the evolution of temperate species in these subgroups with reference to their climatic adaptations. In the takahashii subgroup, D. lutescens (the temperate species) branched off first in the tree based on the combined data set, but D. prostipennis (the subtropical highland species) branched off first in the trees based on single genes. Thus, phylogenetic relationships in this subgroup are still ambiguous. In the montium subgroup, the cool-temperate species are phylogenetically close to the warm-temperate species, and these cool- and warm-temperate species form a cluster with the subtropical highland species. This suggests that perhaps the cool-temperate species derived from the warm-temperate species and the warm-temperate species derived from the subtropical highland species. In comparison with the subtropical lowland species, the subtropical highland species may be better able to colonize temperate areas since, as in the temperate species, they have an ability to develop their ovaries at moderately low temperature. However, the subtropical highland species, as well as the subtropical lowland species, were much less cold tolerant than the temperate species. Therefore, considerable genetic reformation would be required for both the subtropical highland and the subtropical lowland species to adapt to temperate climates.  相似文献   

7.
The diversity and host associations of parasitoids attacking mycophagous drosophilids were studied in Tokyo (a warm‐temperate region) and Sapporo (a cool‐temperate region) in Japan. Field collections were carried out using traps baited with mushrooms in May, June, September and October 2009 in Tokyo and in July and August 2010 in Sapporo. The major drosophilid species that emerged from mushroom baits was Drosophila bizonata in Tokyo and D. orientacea in Sapporo. In total, 13 parasitoid species emerged from drosophilids occurring in mushroom baits, and 11 of them were larval parasitoids belonging to Braconidae and Figitidae. Among the 11 larval parasitoids, 10 were collected in Tokyo, while only two were collected in Sapporo. It is not known why their diversity differed so much between these two regions. Four of the 11 larval parasitoids have also been recorded from drosophilid larvae occurring in fruit (banana). The use of these two habitats (mushrooms and fruit) by these four species seems to reflect the occurrence (i.e. resource use) of their suitable hosts. On the other hand, most larval parasitoids from Tokyo attacked D. bizonata, and two larval parasitoids from Sapporo attacked D. orientacea, suggesting that the abundance of potential hosts is one of the important factors affecting their host use.  相似文献   

8.
Predicting the biodiversity impacts of global warming implies that we know where and with what magnitude these impacts will be encountered. Amphibians are currently the most threatened vertebrates, mainly due to habitat loss and to emerging infectious diseases. Global warming may further exacerbate their decline in the near future, although the impact might vary geographically. We predicted that subtropical amphibians should be relatively susceptible to warming‐induced extinctions because their upper critical thermal limits (CTmax) might be only slightly higher than maximum pond temperatures (Tmax). We tested this prediction by measuring CTmax and Tmax for 47 larval amphibian species from two thermally distinct subtropical communities (the warm community of the Gran Chaco and the cool community of Atlantic Forest, northern Argentina), as well as from one European temperate community. Upper thermal tolerances of tadpoles were positively correlated (controlling for phylogeny) with maximum pond temperatures, although the slope was steeper in subtropical than in temperate species. CTmax values were lowest in temperate species and highest in the subtropical warm community, which paradoxically, had very low warming tolerance (CTmaxTmax) and therefore may be prone to future local extinction from acute thermal stress if rising pond Tmax soon exceeds their CTmax. Canopy‐protected subtropical cool species have larger warming tolerance and thus should be less impacted by peak temperatures. Temperate species are relatively secure to warming impacts, except for late breeders with low thermal tolerance, which may be exposed to physiological thermal stress in the coming years.  相似文献   

9.
It is well known that in Mammals, spermatogenesis requires a temperature lower than that of the body. In Ectotherms, for example in Insects, male sterility/ fertility according to environmental conditions also remains a neglected field. In Drosophila melanogaster, a complete male sterility after development at 30 degrees C was described in 1971. A similar phenomenon, observed at low temperature, was described two years later. Recent comparative investigations have shown that what was found in D. melanogaster was also valid in other species. In each case, it is possible to define a range of temperatures compatible with a complete development. According to the investigated species, however, this range is very variable, for example 6-26 degrees C or 16-32 degrees C. In each case, the occurrence of sterile males is observed before the lethality threshold is reached. Such a phenomenon is probably important for understanding the geographic distributions of species. The cosmopolitan D. melanogaster lives under very different climates and exhibits corresponding adaptations. In countries with a very hot summer, such as India or the African Sahel, male sterility appears only at 31 degrees C. Crosses between a temperate population from France and a heat-resistant Indian population revealed that a large part of the genetic difference was carried by the Y chromosome. Such a result is surprising since the Y chromosome harbors only a very small number of genes. In conclusion, drosophilid species, during their evolution, were able to adapt to very different climates and the thermal sterility thresholds have changed, following these adaptations. But we still lack an evolutionary hypothesis for explaining why sterile males are, in all cases, produced at extreme, low or high temperatures.  相似文献   

10.
Small leaves and low specific leaf area (SLA) have long been viewed as adaptations to Mediterranean-type climates in many species of evergreen woody plants. However, paleobotanical and floristic evidence suggests that in many cases these traits originated prior to the advent of the summer-drought climate regime. In this study, molecular phylogenies and ancestral state reconstructions were used to test the hypothesis of adaptive leaf evolution in 12 lineages of evergreen shrubs in the California chaparral. Across all lineages there was a small but significant shift toward lower SLA, but there were no trends in leaf size evolution. For individual lineages, adaptive changes were detected in only three cases for SLA and in one case for leaf size. Three of these cases of evolutionary change were observed in taxa derived from cool temperate ancestors (e.g., Heteromeles). In contrast, most lineages originating from subtropical ancestors exhibited relative stasis in leaf trait evolution (e.g., Ceanothus). The absence of change suggests that ancestors of chaparral taxa had already acquired appropriate traits that contributed to their success under Mediterranean-type climates. These results illustrate how biogeographic history may influence patterns of trait evolution and adaptation and highlight the contribution of ecological sorting processes to the assembly and functional ecology of regional biotas.  相似文献   

11.
12.
Nasal respiratory turbinates are complex, epithelially lined structures in nearly all birds and mammals that act as intermittent countercurrent heat exchangers during routine lung ventilation. This study examined avian respiratory turbinate function in five large bird species (115-1,900 g) inhabiting mesic temperate climates. Evaporative water loss and oxygen consumption rates of birds breathing normally (nasopharyngeal breathing) and with nasal turbinates experimentally bypassed (oropharyngeal breathing) were measured. Water and heat loss rates were calculated from lung tidal volumes and nasal and oropharyngeal exhaled air temperatures (T(ex)). Resulting data indicate that respiratory turbinates are equally adaptive across a range of avian orders, regardless of environment, by conserving significant fractions of the daily water and heat budget. Nasal T(ex) of birds was compared to that of lizards, which lack respiratory turbinates. The comparatively high nasal T(ex) of the lizards in similar ambient conditions suggests that their relatively low metabolic rates and correspondingly reduced lung ventilation rates may have constrained selection on similar respiratory adaptations.  相似文献   

13.
The effect of water temperature on growth responses of three common seagrass fish species that co‐occur as juveniles in the estuaries in Sydney (34° S) but have differing latitudinal ranges was measured: Pelates sexlineatus (subtropical to warm temperate: 27–35° S), Centropogon australis (primarily subtropical to warm temperate: 24–37° S) and Acanthaluteres spilomelanurus (warm to cool temperate: below 32° S). Replicate individuals of each species were acclimated over a 7 day period in one of three temperature treatments (control: 22° C, low: 18° C and high: 26° C) and their somatic growth was assessed within treatments over 10 days. Growth of all three species was affected by water temperature, with the highest growth of both northern species (P. sexlineatus and C. australis) at 22 and 26° C, whereas growth of the southern ranging species (A. spilomelanurus) was reduced at temperatures higher than 18° C, suggesting that predicted increase in estuarine water temperatures through climate change may change relative performance of seagrass fish assemblages.  相似文献   

14.
This study focused on the acute physiological responses to saltwater exposure in juvenile shortnose sturgeon Acipenser brevirostrum. In two separate laboratory experiments, 2 year‐old A. brevirostrum were exposed to either full (32) or half‐strength (16) seawater for up to 24 h. First, oxygen consumption rates were used to estimate the metabolic costs over 24 h. Secondly, blood and muscle samples were analysed at 6, 12 and 24 h for water loss, various measures of osmoregulatory status (plasma osmolality and ions) and other standard haematological variables. Juveniles exposed to full‐strength seawater showed significant decreases in oxygen consumption rates during the 24 h exposure. Furthermore, seawater‐exposed fish had significantly increased plasma osmolality, ions (Na+ and Cl?) and a 17% decrease in total wet mass over the 24 h exposure period. To a lesser extent, increases in osmolality, ions and mass loss were observed in fish exposed to half‐strength seawater but no changes to oxygen consumption. Cortisol was also significantly increased in fish exposed to full‐strength seawater. While plasma protein was elevated following 24 h in full‐strength seawater, haemoglobin, haematocrit and plasma glucose levels did not change with increased salinity. These results imply an inability of juvenile A. brevirostrum to regulate water and ions in full‐strength seawater within 24 h. Nonetheless, no mortality occurred in any exposure, suggesting that juvenile A. brevirostrum can tolerate short periods in saline environments.  相似文献   

15.
Around the world, several pest tephritids are extending their ranges from warm tropical or Mediterranean climates into cooler temperate regions. The ability to tolerate climatic diversity is uncommon among insects, and understanding the population phenology drivers of such species across different parts of their range will be critical for their management. Here, we determined the role of temperature versus fruit availability on the population phenology of Queensland fruit fly, Bactrocera tryoni. Using a field site located at the subtropical/temperate interface, with host fruits continuously available, we monitored the development times and abundance of B. tryoni, a species which has invaded temperate Australia from the tropics. From fruit samples held at ambient and controlled conditions, the abundance of emerging flies was highly variable among collection dates, but the variance did not reflect the observed changes in temperature. For most samples, the survival rate of flies in a field site was lower than predicted by a day‐degree population model fitted with mean daily field temperatures. The development time of the immature stage in the field was prolonged, presumably due to cooler ambient conditions, but the fitted day‐degree population model consistently over‐predicted estimated development times. Our results indicate that at the subtropical/temperate interface, the decline in B. tryoni populations during winter is only partly driven by temperature and host availability. We classify B. tryoni as a climate generalist, which likely employs physiological as well as behavioural mechanisms to achieve broad climatic tolerance ranges.  相似文献   

16.
Standard metabolic rate of Greenland cod or uvak, Gadus ogac, polar cod, Boreogadus saida, Atlantic cod, Gadus morhua, and sculpin, Myxocephalus scorpius, caught in the same geographical area on the west coast of Greenland was measured at 4.5°C, the temperature at which the fish were caught. The present data does not support the Metabolic Cold Adaptation theory in the traditional sense of the standard metabolic rate being 2–4 times higher for Arctic fishes than for temperate species. The standard metabolic rate of the two exclusively Arctic species of teleosts was only 10% and 26% higher, respectively, than the two species that occur in temperate as well as Arctic areas. The critical oxygen tension, with respect to oxygen consumption, of resting uvak was between 50 and 60 mmHg, and the lethal oxygen tension 20–25 mmHg at 4.5°C, which is considerably higher than for Atlantic cod from a temperate area measured at the same temperature.  相似文献   

17.
18.
Abstract Pollen analysis of the sediments of a small bog, supporting a stand of cool temperate rainforest in southeastern Tasmania, was undertaken in order to examine the history of the stand dominant, Nothofagus cunninghamii, presently growing outside its predicted climatic range. The pollen record covers at least the last 9000 years and reveals changes in the bog and in the surrounding vegetation, although pollen percentages of N. cunninghamii are sufficiently high to indicate that the species could have had a local presence throughout the recorded period. It is likely that this N. cunninghamii stand is relictual, surviving not only Holocene climates, but also the cool dry conditions of the last glacial period. This ability to survive changing and sometimes very unfavourable climates leads to the conclusion that great caution must be exercised in using present climates alone to predict the potential distribution of N. cunninghamii.  相似文献   

19.
Abstract Female viviparous lizards from temperate locations in the Southern Hemisphere (New Zealand, Tasmania (Australia), South Africa and South America) often have reproductive activity spanning many months of the year. In contrast, vitellogenesis and pregnancy are often confined to the spring/summer months in viviparous species from temperate zones of the Northern Hemisphere. An extreme Southern Hemisphere example is the nocturnal common gecko from New Zealand, Hoplodactylus maculatus (Gray 1845), in which females exhibit biennial reproduction with pregnancy lasting up to 14 months in a cool‐climate population. Here, we examined whether such an extended reproductive cycle also occurs in a diurnal species, the jewelled gecko Naultinus gemmeus (McCann 1955), at a similar latitude. Palpation was used to assess reproductive condition non‐invasively. In contrast to the nearby higher‐altitude population of H. maculatus, N. gemmeus reproduces annually. Vitellogenesis occurs from autumn to spring in both species, but pregnancy ends after about 7 months in N. gemmeus. Birth occurs in the seemingly unpropitious season of mid‐ to late autumn, a pattern that may be unique for lizards from cool‐temperate zones. We hypothesize that there are major differences between populations of N. gemmeus and H. maculatus with respect to survival of autumn‐born neonates and/or costs to females from remaining pregnant over winter. Museum specimens of N. gemmeus support anatomical inferences from palpation; they also suggest that vitellogenesis may begin before the end of pregnancy (which may be essential to completing each reproductive cycle within a year) and that some populations may show gestation in utero over winter, as in H. maculatus. Extended gestation appears to be a common response to cool climates for Southern Hemisphere lizards that have independently evolved viviparity.  相似文献   

20.
Samples of the foxfish Bodianus frenchii, collected over reefs on the lower west and south coasts of Western Australia, contained individuals ranging up to 78 years old. Although B. frenchii is far smaller than many other species within the Labridae, its maximum age is the greatest yet recorded for this highly speciose family and, together with Achoerodus gouldii, provides an example of a temperate hypsigenyine with exceptional longevity. Length and age compositions of females and males and the histological characteristics of gonads of a wide length range of individuals demonstrated that B. frenchii is a protogynous hermaphrodite. Furthermore, as, on both coasts, the length of the smallest male was greater than that at which all females had become mature, B. frenchii is a monandric protogynous hermaphrodite, i.e. all of its males are derived from functional females. Attainment of maturity by females is related more to length than age, whereas the reverse is true for sex change. On the basis of Schnute growth equations and length‐to‐body mass regression equations, the predicted length at age and body mass at length of fish on the south coast were greater than those on the west coast throughout life. Although B. frenchii spawns daily during the main spawning season, which extends from October to February on both coasts, its fecundity at any given length is substantially greater on the south than on the west coast. The more rapid growth of juveniles and earlier attainment of maturity by B. frenchii on the south coast than on the warmer west coast, together with maturation at a similar size on both coasts, run counter to the trends observed in many species and certain ecological theories regarding the relationships between life‐cycle traits and latitude and temperature. The attainment by B. frenchii of a larger body length at age, of greater body mass at length and of greater fecundity at both length and body mass in fish on the south than on the west coast strongly suggests that conditions on the former, cooler coast are more favourable for this labrid, which belongs to a sub‐genus whose other species typically live in cool, deep, temperate waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号