首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The δ13C values of atmospheric carbon dioxide (CO2) can be used to partition global patterns of CO2 source/sink relationships among terrestrial and oceanic ecosystems using the inversion technique. This approach is very sensitive to estimates of photosynthetic 13C discrimination by terrestrial vegetation (ΔA), and depends on δ13C values of respired CO2 fluxes (δ13CR). Here we show that by combining two independent data streams – the stable isotope ratios of atmospheric CO2 and eddy‐covariance CO2 flux measurements – canopy scale estimates of ΔA can be successfully derived in terrestrial ecosystems. We also present the first weekly dataset of seasonal variations in δ13CR from dominant forest ecosystems in the United States between 2001 and 2003. Our observations indicate considerable summer‐time variation in the weekly value of δ13CR within coniferous forests (4.0‰ and 5.4‰ at Wind River Canopy Crane Research Facility and Howland Forest, respectively, between May and September). The monthly mean values of δ13CR showed a smaller range (2–3‰), which appeared to significantly correlate with soil water availability. Values of δ13CR were less variable during the growing season at the deciduous forest (Harvard Forest). We suggest that the negative correlation between δ13CR and soil moisture content observed in the two coniferous forests should represent a general ecosystem response to the changes in the distribution of water resources because of climate change. Shifts in δ13CR and ΔA could be of sufficient magnitude globally to impact partitioning calculations of CO2 sinks between oceanic and terrestrial compartments.  相似文献   

2.
Comparisons were made among Douglas‐fir forest, aspen (broad leaf deciduous) forest and wheatgrass (C3) grassland for ecosystem‐level water‐use efficiency (WUE). WUE was defined as the ratio of photosynthetic CO2 assimilation rate and evapotranspiration (ET) rate. The ET data measured by eddy covariance were screened so that they overwhelmingly represented transpiration. The three sites used in this comparison spanned a range of vegetation (plant functional) types and environmental conditions within western Canada. When compared in the relative order Douglas‐fir (located on Vancouver Island, BC), aspen (northern Saskatchewan), grassland (southern Alberta), the sites demonstrated a progressive decline in precipitation and a general increase in maximum air temperature and atmospheric saturation deficit (Dmax) during the mid‐summer. The average (±SD) WUE at the grassland site was 2.6±0.7 mmol mol?1, which was much lower than the average values observed for the two other sites (aspen: 5.4±2.3, Douglas‐fir: 8.1±2.4). The differences in WUE among sites were primarily because of variation in ET. The highest maximum ET rates were approximately 5, 3.2 and 2.7 mm day?1 for the grassland, aspen and Douglas‐fir sites, respectively. There was a strong negative correlation between WUE and Dmax for all sites. We also made seasonal measurements of the carbon isotope ratio of ecosystem respired CO2 (δR) in order to test for the expected correlation between shifts in environmental conditions and changes to the ecosystem‐integrated ratio of leaf intercellular to ambient CO2 concentration (ci/ca). There was a consistent increase in δR values in the grassland, aspen forest and Douglas‐fir forest associated with a seasonal reduction in soil moisture. Comparisons were made between WUE measured using eddy covariance with that calculated based on D and δR measurements. There was excellent agreement between WUE values calculated using the two techniques. Our δR measurements indicated that ci/ca values were quite similar among the Douglas‐fir, aspen and grassland sites, despite large variation in environmental conditions among sites. This implied that the shorter‐lived grass species had relatively high ci/ca values for the D of their habitat. By contrast, the longer‐lived Douglas‐fir trees were more conservative in water‐use with lower ci/ca values relative to their habitat D. This illustrates the interaction between biological and environmental characteristics influencing ecosystem‐level WUE. The strong correlation we observed between the two independent measurements of WUE, indicates that the stable isotope composition of respired CO2 is a useful ecosystem‐scale tool to help study constraints to photosynthesis and acclimation of ecosystems to environmental stress.  相似文献   

3.
The terrestrial carbon cycle is influenced by environmental variability at scales ranging from diurnal to interannual. Here, we present 5‐years of growing season (day 131–275) observations of the carbon isotope ratio of ecosystem respiration (δ13CR) from a semiarid woodland. This ecosystem has a large necromass component resulting from 97%Pinus edulis mortality in 2002, is dominated by drought‐tolerant Juniperus monosperma trees, and experiences large variability in the timing and intensity of seasonal and synoptic water availability. Mean growing season δ13CR was remarkably invariant (?23.57±0.4‰), with the exception of particularly enriched δ13CR in 2006 following a winter with anomalously low snowfall. δ13CR was strongly coupled to climate during premonsoon periods (~May to June), including fast (≤2 days) responses to changes in crown‐level stomatal conductance (Gc) and vapor pressure deficit (vpd) following rain pulses. In contrast, δ13CR was relatively decoupled from Gc and environmental drivers during monsoon and postmonsoon periods (July–August and September, respectively), exhibiting only infrequent couplings of δ13CR to vpd and soil water content (SWC) with longer lags (~8 days) and variable response slopes (both positive and negative). Notably, δ13CR exhibited consistent dynamics after rainfall events, with depleted δ13CR occurring within 1 h, progressive hourly δ13CR enrichment over the remainder of the night, and net δ13CR depletions over the multiple nights postevent in monsoon and postmonsoon periods. Overall this ecosystem demonstrated strong dependence of δ13CR on precipitation, with an apparent dominance by the autotrophic δ13C signal in premonsoon periods when deep soil moisture is abundant and surface soil moisture is low, and weaker coupling during monsoonal periods consistent with increasing heterotrophic dominance when deep soil moisture has declined and surface moisture is variable.  相似文献   

4.
Estimates of terrestrial carbon isotope discrimination are useful to quantify the terrestrial carbon sink. Carbon isotope discrimination by terrestrial ecosystems may vary on seasonal and interannual time frames, because it is affected by processes (e.g. photosynthesis, stomatal conductance, and respiration) that respond to variable environmental conditions (e.g. air humidity, temperature, light). In this study, we report simulations of the temporal variability of canopy‐scale C3 photosynthetic carbon isotope discrimination obtained with an ecophysiologically based model (ISOLSM) designed for inclusion in global models. ISOLSM was driven by half‐hourly meteorology, and parameterized with eddy covariance measurements of carbon and energy fluxes and foliar carbon isotope ratios from a pine forest in Metolius (OR). Comparing simulated carbon and energy fluxes with observations provided a range of parameter values that optimized the simulated fluxes. We found that the sensitivity of photosynthetic carbon isotope discrimination to the slope of the stomatal conductance equation (m, Ball–Berry constant) provided an additional constraint to the model, reducing the wide parameter space obtained from the fluxes alone. We selected values of m that resulted in similar simulated long‐term discrimination as foliar isotope ratios measured at the site. The model was tested with 13C measurements of ecosystem (δR) and foliar (δf) respiration. The daily variability of simulated 13C values of assimilated carbon (δA) was similar to that of observed δf, and higher than that of observed and simulated δR. We also found similar relationships between environmental factors (i.e. vapor pressure deficit) and simulated δR as measured in ecosystem surveys of δR. Therefore, ISOLSM reasonably simulated the short‐term variability of δA controlled by atmospheric conditions at the canopy scale, which can be useful to estimate the variability of terrestrial isotope discrimination. Our study also shows that including the capacity to simulate carbon isotope discrimination, together with simple ecosystem isotope measurements, can provide a useful constraint to land surface and carbon balance models.  相似文献   

5.
Respiration is a substantial driver of carbon (C) flux in forest ecosystems and stable C isotopes provide an excellent tool for its investigation. We studied seasonal dynamics in δ13C of CO2 efflux (δ13CE) from non‐leafy branches, upper and lower trunks and coarse roots of adult trees, comparing deciduous Fagus sylvatica (European beech) with evergreen Picea abies (Norway spruce). In both species, we observed strong and similar seasonal dynamics in the δ13CE of above‐ground plant components, whereas δ13CE of coarse roots was rather stable. During summer, δ13CE of trunks was about ?28.2‰ (Beech) and ?26.8‰ (Spruce). During winter dormancy, δ13CE increased by 5.6–9.1‰. The observed dynamics are likely related to a switch from growth to starch accumulation during fall and remobilization of starch, low TCA cycle activity and accumulation of malate by PEPc during winter. The seasonal δ13CE pattern of branches of Beech and upper trunks of Spruce was less variable, probably because these organs were additionally supplied by winter photosynthesis. In view of our results and pervious studies, we conclude that the pronounced increases in δ13CE of trunks during the winter results from interrupted access to recent photosynthates.  相似文献   

6.
Accurate estimates of the δ13C value of CO2 respired from roots (δ13CR_root) and leaves (δ13CR_leaf) are important for tracing and understanding changes in C fluxes at the ecosystem scale. Yet the mechanisms underlying temporal variation in these isotopic signals are not fully resolved. We measured δ13CR_leaf, δ13CR_root, and the δ13C values and concentrations of glucose and sucrose in leaves and roots in the C4 grass Sporobolus wrightii and the C3 tree Prosopis velutina in a savanna ecosystem in southeastern Arizona, USA. Night‐time variation in δ13CR_leaf of up to 4.6 ± 0.6‰ in S. wrightii and 3.0 ± 0.6‰ in P. velutina were correlated with shifts in leaf sucrose concentration, but not with changes in δ13C values of these respiratory substrates. Strong positive correlations between δ13CR_root and root glucose δ13C values in P. velutina suggest large diel changes in δ13CR_root (were up to 3.9‰) influenced by short‐term changes in δ13C of leaf‐derived phloem C. No diel variation in δ13CR_root was observed in S. wrightii. Our findings show that short‐term changes in δ13CR_leaf and δ13CR_root were both related to substrate isotope composition and concentration. Changes in substrate limitation or demand for biosynthesis may largely control short‐term variation in the δ13C of respired CO2 in these species.  相似文献   

7.
Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (δ18O) as high as 4‰ were observed for water vapour (δ18Ovp) above and within an old‐growth coniferous forest in the Pacific Northwest region of the United States. Values of δ18Ovp decreased in the morning, reached a minimum at midday, and recovered to early‐morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2‐d period by considering the 18O‐isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do δ18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of δ18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O‐isoflux in the morning of day 1, causing values of δ18Ovp to decrease. An isotopically enriched 18O‐isoflux resulting from transpiration then offset this decreased δ18Ovp later during the day. Contributions of 18O‐isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H216O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas‐fir trees as ≈ 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non‐steady state model for predicting δ18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of transpiration. The impact of this increase on the modelled δ 18Ovp was clearly detectable, suggesting the importance of considering isotopic non‐steady state of transpiration in studies of forest 18O water balance.  相似文献   

8.
Stable isotopes of CO2 contain unique information on the biological and physical processes that exchange CO2 between terrestrial ecosystems and the atmosphere. In this study, we developed an integrated modeling system to simulate dynamics of stable carbon isotope of CO2, as well as moisture, energy, and momentum, between a boreal forest ecosystem and the atmosphere, as well as their transport/mixing processes through the convective boundary layer (CBL), using remotely sensed surface parameters to characterize the surface heterogeneity. It has the following characteristics: (i) it accounts for the influences of the CBL turbulent mixing and entrainment of the air aloft; (ii) it scales individual leaf‐level photosynthetic discrimination up to the whole canopy (Δcanopy) through the separation of sunlit and shaded leaf groups; (iii) it has the capacity to examine the detailed interrelationships among plant water‐use efficiency, isotope discrimination, and vapor pressure deficit; and (iv) it has the potential to investigate how an ecosystem discriminates against 13C at various time and spatial scales. The monthly mean isotopic signatures of ecosystem respiration (i.e. δ13CR) used for isotope flux calculation are retrieved from the nighttime flask data from the intensive campaigns (1998–2000) at 20 m level on Fraserdale tower, and the data from the growing season in 1999 are used for model validation. Both the simulated CO2 mixing ratio and δ13C of CO2 at the 20 m level agreed with the measurements well in different phases of the growing season. On a diurnal basis, the greatest photosynthetic discrimination at canopy level (i.e. Δcanopy) occurred early morning and late afternoon with a varying range of 10–26‰. The diurnal variability of Δcanopy was also associated with the phases of growing season and meteorological variables. The annual mean Δcanopy in 1999 was computed to be 19.58‰. The monthly averages of Δcanopy varied between 18.55‰ and 20.84‰ with a seasonal peak during the middle growing season. Because of the strong opposing influences of respired and photosynthetic fluxes on forest air (both CO2 and 13CO2) on both the diurnal and seasonal time scales, CO2 was consistently enriched with the heavier 13C isotope (less negative δ13C) from July to October and depleted during the remaining months, whereas on a diurnal basis, CO2 was enriched with the heavier 13C in the late afternoon and depleted in early morning. For the year 1999, the model results reveal that the boreal ecosystem in the vicinity of Fraserdale tower was a small sink with net uptake of 29.07 g 12C m?2 yr?1 and 0.34 g 13C m?2 yr?1.  相似文献   

9.
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13C biosignatures. The δ13C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan‐orange (TO) at the surface, green (G), purple (P), and olive‐black (OB) at the bottom. δ13C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13CTOC of the underlying G was 3‰ greater than that of TO. The most δ13C‐depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n‐alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ?[δ13CTOC ? δ13C∑IPFA] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13C‐enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate‐reducing bacteria. P hosted an active sulfur‐dependent microbial community. IPFA and bishomohopanol were 13C‐depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13C‐enriched. Synthesis of alkanes in P was evidenced only by 13C‐depleted n‐octadecane and 8‐methylhexadecane. In OB, the marked increase of total inorganic carbon δ13C (δ13CTIC) of >6‰ perhaps indicated terminal mineralization. This δ13CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13C‐depleted methane from the mat.  相似文献   

10.
Efforts to understand the cause of 12C versus 13C isotope fractionation in plants during photosynthesis and post‐photosynthetic metabolism are frustrated by the lack of data on the intramolecular 13C‐distribution in metabolites and its variation with environmental conditions. We have exploited isotopic carbon‐13 nuclear magnetic resonance (13C NMR) spectrometry to measure the positional isotope composition (δ13Ci, ‰) in ethanol samples from different origins: European wines, liquors and sugars from C3, C4 and crassulacean acid metabolism (CAM) plants. In C3‐ethanol samples, the methylene group was always 13C‐enriched (~2‰) relative to the methyl group. In wines, this pattern was correlated with both air temperature and δ18O of wine water, indicating that water vapour deficit may be a critical defining factor. Furthermore, in C4‐ethanol, the reverse relationship was observed (methylene‐C relatively 13C‐depleted), supporting the concept that photorespiration is the key metabolic process leading to the 13C distribution in C3‐ethanol. By contrast, in CAM‐ethanol, the isotopic pattern was similar to but stronger than C3‐ethanol, with a relative 13C‐enrichment in the methylene‐C of up to 13‰. Plausible causes of this 13C‐pattern are briefly discussed. As the intramolecular δ13Ci‐values in ethanol reflect that in source glucose, our data point out the crucial impact on the ratio of metabolic pathways sustaining glucose synthesis.  相似文献   

11.
The aim of this study was to determine the isotopic‐turnover rate (RIT) and trophic‐discrimination factor (FTD) in muscle tissues of Lebranche mullet Mugil liza fed an experimental diet (δ13C = ?27·1‰; δ15N = 1·0‰). Juvenile M. liza exhibited a relatively fast RIT, with a half‐life (t50) of only 16 and 14 days for δ13C and δ15N respectively and a nearly complete isotopic turnover (t95) of 68 and 60 days for δ13C and δ15N.  相似文献   

12.
Seasonal variation in δ13C and δ18O of cellulose (δ13Cc and δ18Oc) was measured within two annual rings of Pinus radiata growing at three sites in New Zealand. In general, both δ13Cc and δ18Oc increased to a peak over summer. The three sites differed markedly in annual water balance, and these differences were reflected in δ13Cc and δ18Oc. Average δ13Cc and δ18Oc from each site were positively related, so that the driest site had the most enriched cellulose. δ13Cc and δ18Oc were also related within each site, although both the slope and the closeness of fit of the relationship varied between sites. Supporting the theory, the site with the lowest average relative humidity also had the greatest change in δ18Oc‰ change in δ13Cc. Specific climatic events, such as drought or high rainfall, were recorded as a peak or a trough in enrichment, respectively. These results suggest that seasonal and between‐site variation in δ13Cc and δ18Oc are driven by the interaction between variation in climatic conditions and soil water availability, and plant response to this variation.  相似文献   

13.
We have investigated carbon isotopic compositions of four plant genus/species, Bothriochloa ischaemum (C4), Stipa bungeana (C3), Lespedeza sp. (C3) and Heteropappus less (C3), along a precipitation gradient in northwest China in order to assess the impact of water availability on the carbon isotopic discrimination against 13C during carbon assimilation in this area. This information is necessary for reconstruction of paleovegetation, particularly paleo‐C3/C4 plant ratios using δ13C value of organic matter in loess and paleosols in the Chinese Loess Plateau. The δ13C of C3 plants, as a group, exhibits a negative correlation with the annual precipitation amount with a total change and sensitivity of 5‰ and ?1.1‰/100 mm, respectively, for the precipitation range from 200 to 700 mm. The C4 grass, B. ischaemum responds to aridity by decreasing 1.7‰ for over the precipitation range from 350 to 700 mm; the plant δ13C is significantly correlated with annual precipitation with a slope ?0.61‰/100 mm. This result implies that without considering the effect of water availability on the plant δ13C values, reconstruction of percent C4 vegetation during the last glaciation can be overestimated by about a factor of two.  相似文献   

14.
The carbon isotope composition (δ13C) of C3 ecosystems is sensitive to water availability, and provides important information for the assessment of terrestrial carbon (C) sink/source activity. Here, we report the effects of plant available soil water (PAW) on community 13C signatures of temperate humid grassland. The 5‐year study was conducted on pastures exhibiting a large range of PAW capacity that were located on two site types: peat and mineral soils. The data set included the centennial drought year 2003, and data from wet years (2000 and 2002). Seasonal variation of PAW was modeled using PAW capacity of each pasture, precipitation inputs and evapotranspiration estimates. Community 13C signatures were derived from the δ13C of vegetation and segments of tail switch hair of cattle grown while grazing pastures. Hair 13C signatures provided an assimilation‐weighted 13C signal that integrated both spatial (paddock‐scale) and temporal (grazing season) variation of 13C signatures on a pasture. The δ13C of hair and vegetation increased with decreasing modeled PAW in the same way on mineral and peat soils. But, at a given PAW, the δ13C of hair was 2.6‰ less negative than that of vegetation, reflecting the diet‐hair isotopic shift. Furthermore, the δ13C of hair and vegetation on peat soil pastures was 0.5‰ more negative than on pastures situated on mineral soil. This may have resulted from a ~10 ppm CO2 enrichment of canopy air derived from ongoing peat mineralization. Community‐scale season‐mean 13C discrimination (Δ) exhibited a saturation‐type response towards season‐mean modeled PAW (r2=0.78), and ranged between 19.8‰ on soils with low PAW capacity during the drought year of 2003, and 21.4‰ on soils with high PAW capacity in a wet year. This indicated relatively small variation in season‐mean assimilation‐weighted pi/pa (0.68–0.75) between contrasting sites and years. However, this range is similar to that reported in other studies, which encompass the range from subtropical arid to humid temperate grassland. Furthermore, the tight relationship between season‐mean Δ and modeled mean PAW suggests that PAW may be used as proxy for Δ.  相似文献   

15.
The carbon isotopic composition (δ13C) of plant material has been used extensively as an indirect measure of carbon fixation per volume of water used. More recently, the δ13C of phloem sap (δ13Cphl) has been used as a surrogate measure of short‐term, canopy scale δ13C. Using a combination of δ13C physiological, structural and chemical indices from leaves and phloem sap of Eucalyptus globulus at sites of contrasting water availability, we sought to identify short‐term, canopy scale resource limitations. Results illustrate that δ13Cphl offers valid reflections of short‐term, canopy scale values of leaf δ13C and tree water status. Under conditions limited by water, leaf and phloem sap photoassimilates differ in 13C abundance of a magnitude large enough to significantly influence predictions of water use efficiency. This pattern was not detected among trees with adequate water supply indicating fractionation into heterotrophic tissues that may be sensitive to plant water status. Trees employed a range of physiological, biochemical and structural adaptations to acclimate to resource limitation that differed among sites providing a useful context upon which to interpret patterns in δ13C. Our results highlight that such easily characterized properties are ideal for use as minimally invasive tools to monitor growth and resilience of plants to variations in resource availability.  相似文献   

16.
Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ13C) of soil respiration (δJ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (<1 ‰) in near‐surface soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3–7; and (c) a second period of enrichment (1–2‰) in years 8–10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more 13C‐depleted deeper in the soil than near the surface, while the bulk soil followed the well‐established pattern of 13C‐enrichment at depth. Overall, differences in δJ between mortality classes (<1‰) and soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰).  相似文献   

17.
We present carbon stable isotope, δ13C, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that δ13C values derived from large‐scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem‐scale δ13C values. In this framework, we also tested the potential of δ13C in canopy air and plant organic matter to record regional‐scale ecophysiological patterns. Our network estimates for the mean δ13C of ecosystem respired CO2 and the related ‘discrimination’ of ecosystem respiration, δer and Δer, respectively, were ?25.6±1.9‰ and 17.8 ±2.0‰ in 2001 and ?26.6±1.5‰ and 19.0±1.6‰ in 2002. The results were in close agreement with δ13C values derived from regional‐scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional‐scale atmospheric sampling programs generally capture ecosystem δ13C signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in δer. From west to east, across the network, there was a general enrichment in 13C (~3‰ and ~1‰ for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal 13C enrichment between July and September, followed by depletion in November (from about ?26.0‰ to ?24.5‰ to ?30.0‰), was also observed. In 2001, July and August δer values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (Ta), but not significantly with monthly average precipitation (Pm). In contrast, in 2002 (a much wetter peak season), δer was significantly related with Ta, but not significantly with VPD and RH. The important role of plant physiological processes on δer in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time‐lag analyses of δer vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of δer and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the δer signal during this season. Organic matter δ13C results showed progressive 13C enrichment from leaves, through stems and roots to soil organic matter, which may be explained by 13C fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. δ13C values of organic matter of any of the plant components did not well represent short‐term δer values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components.  相似文献   

18.
Stand density reductions have been proposed as a method by which old‐growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre‐1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing the productivity of the remaining old‐growth individuals. However, the duration of productivity response of individual trees and the physiological mechanisms underlying such a response remain speculative issues, particularly in old trees. Tree‐ring measurements of carbon isotope ratios (δ13C) and basal area increment (BAI) were used to assess the response of intrinsic water‐use efficiency (the ratio of photosynthesis, A to stomatal conductance, g) and growth of individual> 250‐year‐old‐ponderosa pine trees to stand density reductions. It was hypothesized that reductions in stand density would increase soil moisture availability, thus decreasing canopy A/g and increasing carbon isotope discrimination (Δ). Cellulose‐δ13C of annual tree rings, soil water availability (estimated from pre‐dawn leaf water potential), photosynthetic capacity, stem basal growth and xylem anatomy were measured in individual trees within three pairs of thinned and un‐thinned stands. The thinned stands were treated 7 to 15 years prior to measurement. The values of δ13C and BAI were assessed for 20 consecutive years overlapping the date of thinning in a single intensively studied stand, and was measured for 3 years on either side of the date of thinning for the two other stands to assess the generality of the response. After thinning, Δ increased by 0.89‰ (± 0.15‰). The trees in the un‐thinned stands showed no change in Δ (0.00‰ ± 0.04‰). In the intensively studied trees, significant differences were expressed in the first growing season after the thinning took place but it took 6 years before the full 0.89‰ difference was observed. BAI doubled or tripled after disturbance, depending on the stand, and the increased BAI lasted up to 15 years after thinning. In the intensively studied trees, the BAI response did not begin until 3 years after the Δ response, peaked 1 year after the Δ peak, and then BAI and Δ oscillated in unison. The lag between BAI and Δ was not due to slow changes in anatomical properties of the sapwood, because tracheid dimensions and sapwood‐specific conductivity remained unchanged after disturbance. The Δ response of thinned trees indicated that A/g decreased after thinning. Photosynthetic capacity, as indexed by foliar nitrogen ([N]) and by the relationship between photosynthesis and internal CO2 (ACi curves), was unchanged by thinning, confirming our suspicion that the decline in A/g was due to a relatively greater increase in g in comparison with A. Model estimates agreed with this conclusion, predicting that g increased by nearly 25% after thinning relative to a 15% increase in A. Pre‐dawn leaf water potential averaged 0.11 MPa (± 0.03 MPa) less negative for the thinned compared with the un‐thinned trees in all stands, and was strongly correlated with Δ post‐thinning (R2 = 0.91). There was a strong relationship between BAI and modelled A, suggesting that changes in water availability and g have a significant effect on carbon assimilation and growth of these old trees. These results confirm that stand density reductions result in increased growth of individual trees via increased stomatal conductance. Furthermore, they show that a physiological response to stand density reductions can last for up to 15 years in old ponderosa pines if stand leaf area is not fully re‐established.  相似文献   

19.
Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2   总被引:4,自引:0,他引:4  
Because biological and physical processes alter the stable isotopic composition of atmospheric CO2, variations in isotopic content can be used to investigate those processes. Isotopic flux measurements of 13CO2 above terrestrial ecosystems can potentially be used to separate net ecosystem CO2 exchange (NEE) into its component fluxes, net photosynthetic assimilation (FA) and ecosystem respiration (FR). In this paper theory is developed to partition measured NEE into FA and FR, using measurements of fluxes of CO2 and 13CO2, and isotopic composition of respired CO2 and forest air. The theory is then applied to fluxes measured (or estimated, for 13CO2) in a temperate deciduous forest in eastern Tennessee (Walker Branch Watershed). It appears that there is indeed enough additional information in 13CO2 fluxes to partition NEE into its photosynthetic and respiratory components. Diurnal patterns in FA and FR were obtained, which are consistent in magnitude and shape with patterns obtained from NEE measurements and an exponential regression between night‐time NEE and temperature (a standard technique which provides alternate estimates of FR and FA). The light response curve for photosynthesis (FA vs. PAR) was weakly nonlinear, indicating potential for saturation at high light intensities. Assimilation‐weighted discrimination against 13CO2 for this forest during July 1999 was 16.8–17.1‰, depending on canopy conductance. The greatest uncertainties in this approach lie in the evaluation of canopy conductance and its effect on whole‐canopy photosynthetic discrimination, and thus the indirect methods used to estimate isotopic fluxes. Direct eddy covariance measurements of 13CO2 flux are needed to assess the validity of the assumptions used and provide defensible isotope‐based estimates of the component fluxes of net ecosystem exchange.  相似文献   

20.
The contribution of leaf litter decomposition to total soil CO2 efflux (FL/F) was evaluated in a beech (Fagus sylvatica L.) forest in eastern France. The Keeling‐plot approach was applied to estimate the isotopic composition of respired soil CO2 from soil covered with either control (?30.32‰) or 13C‐depleted leaf litter (?49.96‰). The δ13C of respired soil CO2 ranged from ?25.50‰ to ?22.60‰ and from ?24.95‰ to ?20.77‰, respectively, with depleted or control litter above the soil. The FL/F ratio was calculated by a single isotope linear mixing model based on mass conservation equations. It showed seasonal variations, increasing from 2.8% in early spring to about 11.4% in mid summer, and decreasing to 4.2% just after leaf fall. Between December 2001 and December 2002, cumulated F and FL reached 0.98 and 0.08 kgC m?2, respectively. On an annual basis, decomposition of fresh leaf litter accounted for 8% of soil respiration and 80% of total C loss from fresh leaf litter. The other fraction of carbon loss during leaf litter decomposition that is assumed to have entered the soil organic matter pool (i.e. 20%) represents only 0.02 kgC m?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号