首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable signal transmission is crucial for information processing by the brain. Synfire-chains, defined as feed-forward networks of spiking neurons, are a well-studied class of circuit structure that can propagate a packet of single spikes while maintaining a fixed packet profile. Here, we studied the stable propagation of spike bursts, rather than single spike activities, in a feed-forward network of a general class of excitable bursting neurons. In contrast to single spikes, bursts can propagate stably without converging to any fixed profiles. Spike timings of bursts continue to change cyclically or irregularly during propagation depending on intrinsic properties of the neurons and the coupling strength of the network. To find the conditions under which bursts lose fixed profiles, we propose an analysis based on timing shifts of burst spikes similar to the phase response analysis of limit-cycle oscillators.  相似文献   

2.
Single neurons in the cerebral cortex are immersed in a fluctuating electric field, the local field potential (LFP), which mainly originates from synchronous synaptic input into the local neural neighborhood. As shown by recent studies in visual and auditory cortices, the angular phase of the LFP at the time of spike generation adds significant extra information about the external world, beyond the one contained in the firing rate alone. However, no biologically plausible mechanism has yet been suggested that allows downstream neurons to infer the phase of the LFP at the soma of their pre-synaptic afferents. Therefore, so far there is no evidence that the nervous system can process phase information. Here we study a model of a bursting pyramidal neuron, driven by a time-dependent stimulus. We show that the number of spikes per burst varies systematically with the phase of the fluctuating input at the time of burst onset. The mapping between input phase and number of spikes per burst is a robust response feature for a broad range of stimulus statistics. Our results suggest that cortical bursting neurons could play a crucial role in translating LFP phase information into an easily decodable spike count code.  相似文献   

3.
Out-of-phase bursting is a functionally important behavior displayed by central pattern generators and other neural circuits. Understanding this complex activity requires the knowledge of the interplay between the intrinsic cell properties and the properties of synaptic coupling between the cells. Here we describe a simple method that allows us to investigate the existence and stability of anti-phase bursting solutions in a network of two spiking neurons, each possessing a T-type calcium current and coupled by reciprocal inhibition. We derive a one-dimensional map which fully characterizes the genesis and regulation of anti-phase bursting arising from the interaction of the T-current properties with the properties of synaptic inhibition. This map is the burst length return map formed as the composition of two distinct one-dimensional maps that are each regulated by a different set of model parameters. Although each map is constructed using the properties of a single isolated model neuron, the composition of the two maps accurately captures the behavior of the full network. We analyze the parameter sensitivity of these maps to determine the influence of both the intrinsic cell properties and the synaptic properties on the burst length, and to find the conditions under which multistability of several bursting solutions is achieved. Although the derivation of the map relies on a number of simplifying assumptions, we discuss how the principle features of this dimensional reduction method could be extended to more realistic model networks. Action Editor: John Rinzel  相似文献   

4.
Neurons deep in cortex interact with the environment extremely indirectly; the spikes they receive and produce are pre- and post-processed by millions of other neurons. This paper proposes two information-theoretic constraints guiding the production of spikes, that help ensure bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons should emphasize selective responses with bursts. Second, neurons should propagate selective inputs by burst-firing in response to them. We show the constraints are necessary for bursts to dominate information-transfer within cortex, thereby providing a substrate allowing neurons to distribute credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best performed offline during sleep.  相似文献   

5.
Using a population density approach we study the dynamics of two interacting collections of integrate-and-fire-or-burst (IFB) neurons representing thalamocortical (TC) cells from the dorsal lateral geniculate nucleus (dLGN) and thalamic reticular (RE) cells from the perigeniculate nucleus (PGN). Each population of neurons is described by a multivariate probability density function that satisfies a conservation equation with appropriately defined probability fluxes and boundary conditions. The state variables of each neuron are the membrane potential and the inactivation gating variable of the low-threshold Ca2+ current IT. The synaptic coupling of the populations and external excitatory drive are modeled by instantaneous jumps in the membrane potential of postsynaptic neurons. The population density model is validated by comparing its response to time-varying retinal input to Monte Carlo simulations of the corresponding IFB network composed of 100 to 1000 cells per population. In the absence of retinal input, the population density model exhibits rhythmic bursting similar to the 7 to 14 Hz oscillations associated with slow wave sleep that require feedback inhibition from RE to TC cells. When the TC and RE cell potassium leakage conductances are adjusted to represent cholingergic neuromodulation and arousal of the network, rhythmic bursting of the probability density model may either persists or be eliminated depending on the number of excitatory (TC to RE) or inhibitory (RE to TC) connections made by each presynaptic cell. When the probability density model is stimulated with constant retinal input (10–100 spikes/sec), a wide range of responses are observed depending on cellular parameters and network connectivity. These include asynchronous burst and tonic spikes, sleep spindle-like rhythmic bursting, and oscillations in population firing rate that are distinguishable from sleep spindles due to their amplitude, frequency, or the presence of tonic spikes. In this context of dLGN/PGN network modeling, we find the population density approach using 2,500 mesh points and resolving membrane voltage to 0.7 mV is over 30 times more efficient than 1000-cell Monte Carlo simulations. Action Editor: David Golomb  相似文献   

6.
Although the bursting patterns with spike undershoot are involved with the achievement of physiological or cognitive functions of brain with synaptic noise, noise induced-coherence resonance (CR) from resting state or subthreshold oscillations instead of bursting has been widely identified to play positive roles in information process. Instead, in the present paper, CR characterized by the increase firstly and then decease of peak value of power spectrum of spike trains is evoked from a bursting pattern with spike undershoot, which means that the minimal membrane potential within burst is lower than that of the subthreshold oscillations between bursts, while CR cannot be evoked from the bursting pattern without spike undershoot. With bifurcations and fast-slow variable dissection method, the bursting patterns with and without spike undershoot are classified into “Sub-Hopf/Fold” bursting and “Fold/Homoclinic” bursting, respectively. For the bursting with spike undershoot, the trajectory of the subthreshold oscillations is very close to that of the spikes within burst. Therefore, noise can induce more spikes from the subthreshold oscillations and modulate the bursting regularity, which leads to the appearance of CR. For the bursting pattern without spike undershoot, the trajectory of the quiescent state is not close to that of the spikes within burst, and noise cannot induce spikes from the quiescent state between bursts, which is cause for non-CR. The result provides a novel case of CR phenomenon and extends the scopes of CR concept, presents that noise can enhance rather than suppress information of the bursting patterns with spike undershoot, which are helpful for understanding the dynamics and the potential physiological or cognitive functions of the nerve fiber or brain neurons with such bursting patterns.  相似文献   

7.
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the layer 10 (L10) neurons in the optic tectum and respond with oscillatory bursts to visual stimulation. Our in vitro experiments show that both neuron types respond with regular spiking to somatic current injection and that the feedforward and feedback synaptic connections are excitatory, but of different strength and time course. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation. A scan through the model parameter volume reveals that Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic conductance changes. The mechanism is sensitive to the parameter values of spike-rate adaptation. In conclusion, we show that a network of regular-spiking neurons with feedforward excitation and spike-rate adaptation can generate oscillatory bursting in response to a constant input.  相似文献   

8.
During development, neurons arrive at local brain areas in an extended period of time, but how they form local neural circuits is unknown. Here we computationally model the emergence of a network for precise timing in the premotor nucleus HVC in songbird. We show that new projection neurons, added to HVC post hatch at early stages of song development, are recruited to the end of a growing feedforward network. High spontaneous activity of the new neurons makes them the prime targets for recruitment in a self-organized process via synaptic plasticity. Once recruited, the new neurons fire readily at precise times, and they become mature. Neurons that are not recruited become silent and replaced by new immature neurons. Our model incorporates realistic HVC features such as interneurons, spatial distributions of neurons, and distributed axonal delays. The model predicts that the birth order of the projection neurons correlates with their burst timing during the song.  相似文献   

9.
Encoding features of spatiotemporally varying stimuli is quite important for understanding the neural mechanisms of various sensory coding. Temporal coding can encode features of time-varying stimulus, and population coding with temporal coding is adequate for encoding spatiotemporal correlation of stimulus features into spatiotemporal activity of neurons. However, little is known about how spatiotemporal features of stimulus are encoded by spatiotemporal property of neural activity. To address this issue, we propose here a population coding with burst spikes, called here spatiotemporal burst (STB) coding. In STB coding, the temporal variation of stimuli is encoded by the precise onset timing of burst spike, and the spatiotemporal correlation of stimuli is emphasized by one specific aspect of burst firing, or spike packet followed by silent interval. To show concretely the role of STB coding, we study the electrosensory system of a weakly electric fish. Weakly electric fish must perceive the information about an object nearby by analyzing spatiotemporal modulations of electric field around it. On the basis of well-characterized circuitry, we constructed a neural network model of the electrosensory system. Here we show that STB coding encodes well the information of object distance and size by extracting the spatiotemporal correlation of the distorted electric field. The burst activity of electrosensory neurons is also affected by feedback signals through synaptic plasticity. We show that the control of burst activity caused by the synaptic plasticity leads to extracting the stimulus features depending on the stimulus context. Our results suggest that sensory systems use burst spikes as a unit of sensory coding in order to extract spatiotemporal features of stimuli from spatially distributed stimuli.  相似文献   

10.
I seek to explain phenomena observed in simulations of populations of gap junction-coupled bursting cells by studying the dynamics of identical pairs. I use a simplified model for pancreatic β-cells and decompose the system into fast (spike-generating) and slow subsystems to show how bifurcations of the fast subsystem affect bursting behavior. When coupling is weak, the spikes are not in phase but rather are anti-phase, asymmetric or quasi-periodic. These solutions all support bursting with smaller amplitude spikes than the in-phase case, leading to increased burst period. A key geometrical feature underlying this is that the in-phase periodic solution branch terminates in a homoclinic orbit. The same mechanism also provides a model for bursting as an emergent property of populations; cells which are not intrinsic bursters can burst when coupled. This phenomenon is enhanced when symmetry is broken by making the cells differ in a parameter.  相似文献   

11.
We extend a quantitative model for low-voltage, slow-wave excitability based on the T-type calcium current (Wang et al. 1991) by juxtaposing it with a Hodgkin-Huxley-like model for fast sodium spiking in the high voltage regime to account for the distinct firing modes of thalamic neurons. We employ bifurcation analysis to illustrate the stimulus-response behavior of the full model under both voltage regimes. The model neuron shows continuous sodium spiking when depolarized sufficiently from rest. Depending on the parameters of calcium current inactivation, there are two types of low-voltage responses to a hyperpolarizing current step: a single rebound low threshold spike (LTS) upon release of the step and periodic LTSs. Bursting is seen as sodium spikes ride the LTS crest. In both cases, we analyze the LTS burst response by projecting its trajectory into a fast/slow phase plane. We also use phase plane methods to show that a potassium A-current shifts the threshold for sodium spikes, reducing the number of fast sodium spikes in an LTS burst. It can also annihilate periodic bursting. We extend the previous work of Rose and Hindmarsh (1989a–c) for a thalamic neuron and propose a simpler model for thalamic activity. We consider burst modulation by using a neuromodulator-dependent potassium leakage conductance as a control parameter. These results correspond with experiments showing that the application of certain neurotransmitters can switch firing modes. Received: 18 July 1993/Accepted in revised form: 22 January 1994  相似文献   

12.
Brain signals such as local field potentials often display gamma-band oscillations (30-70 Hz) in a variety of cognitive tasks. These oscillatory activities possibly reflect synchronization of cell assemblies that are engaged in a cognitive function. A type of pyramidal neurons, i.e., chattering neurons, show fast rhythmic bursting (FRB) in the gamma frequency range, and may play an active role in generating the gamma-band oscillations in the cerebral cortex. Our previous phase response analyses have revealed that the synchronization between the coupled bursting neurons significantly depends on the bursting mode that is defined as the number of spikes in each burst. Namely, a network of neurons bursting through a Ca(2+)-dependent mechanism exhibited sharp transitions between synchronous and asynchronous firing states when the neurons exchanged the bursting mode between singlet, doublet and so on. However, whether a broad class of bursting neuron models commonly show such a network behavior remains unclear. Here, we analyze the mechanism underlying this network behavior using a mathematically tractable neuron model. Then we extend our results to a multi-compartment version of the NaP current-based neuron model and prove a similar tight relationship between the bursting mode changes and the network state changes in this model. Thus, the synchronization behavior couples tightly to the bursting mode in a wide class of networks of bursting neurons.  相似文献   

13.
To determine why elements of central pattern generators phase lock in a particular pattern under some conditions but not others, we tested a theoretical pattern prediction method. The method is based on the tabulated open loop pulsatile interactions of bursting neurons on a cycle-by-cycle basis and was tested in closed loop hybrid circuits composed of one bursting biological neuron and one bursting model neuron coupled using the dynamic clamp. A total of 164 hybrid networks were formed by varying the synaptic conductances. The prediction of 1:1 phase locking agreed qualitatively with the experimental observations, except in three hybrid circuits in which 1:1 locking was predicted but not observed. Correct predictions sometimes required consideration of the second order phase resetting, which measures the change in the timing of the second burst after the perturbation. The method was robust to offsets between the initiation of bursting in the presynaptic neuron and the activation of the synaptic coupling with the postsynaptic neuron. The quantitative accuracy of the predictions fell within the variability (10%) in the experimentally observed intrinsic period and phase resetting curve (PRC), despite changes in the burst duration of the neurons between open and closed loop conditions.  相似文献   

14.
Swimming in Aequorea is controlled by a network of electrically coupled neurons (swim motorneurons) located in the inner nerve ring. The network is made up of the largest neurons in the ring, up to 22 microns in diameter. Intracellular recordings from swim motorneurons reveal slow membrane potential oscillations and a superimposed barrage of synaptic "noise." The synaptic noise, but not the slow oscillations, is eliminated in seawater containing an elevated Mg++ concentration. The swim motorneurons produce a rapid burst of two to eight action potentials preceding each contraction of the subumbrella. Spontaneous bursting persists in high-Mg++ seawater. Injected ramp currents indicated a "bursty" character of the swim motorneurons as suprathreshold depolarizations produced repetitive bursting with an increasing burst frequency with increased depolarization. Hyperpolarizing currents locally blocked spiking in swim motorneurons. Intercellular coupling was demonstrated with Lucifer Yellow injection and dual electrode recordings. In dye fills, only the large neurons of the inner nerve ring were dye-coupled. Two pieces of evidence suggest that swim motorneurons activate the overlying epithelial cells via chemical synapses. First, direct synaptic connections have been noted in ultrastructural examination of the inner nerve ring region. Second, dual recordings from a swim motorneuron and an epithelial cell reveal a 1:1 correspondence between neuron spikes and epithelial synaptic potentials. The synaptic potentials occur with a latency as short as 3 ms which is constant in any one recording session. The results suggest that the swim motorneuron network of Aequorea not only performs a motorneuron function, but also serves as the pattern generator for swimming activity.  相似文献   

15.
Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABA(A) receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics.  相似文献   

16.
Magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) display bursting activity that is synchronized under certain conditions. They receive excitatory synaptic inputs from intrahypothalamic glutamate circuits, some of which are activated by norepinephrine. Ascending noradrenergic afferents and intrahypothalamic glutamate circuits may be responsible for the generation of synchronous bursting among oxytocin neurons and/or asynchronous bursting among vasopressin neurons located in the bilateral supraoptic and paraventricular nuclei. Here, we tested whether magnocellular neurons of the PVN receive excitatory synaptic input from the contralateral PVN and the region of the retrochiasmatic SON (SONrx) via norepinephrine-sensitive internuclear glutamate circuits. Whole cell patch-clamp recordings were performed in PVN magnocellular neurons in coronal hypothalamic slices from male rats, and the ipsilateral SONrx region and contralateral PVN were stimulated using electrical and chemical stimulation. Electrical and glutamate microdrop stimulation of the ipsilateral SONrx region or contralateral PVN elicited excitatory postsynaptic potentials/currents (EPSP/Cs) in PVN magnocellular neurons mediated by glutamate release, revealing internuclear glutamatergic circuits. Microdrop application of norepinephrine also elicited EPSP/Cs, suggesting that these circuits could be activated by activation of noradrenergic receptors. Repetitive electrical stimulation and drop application of norepinephrine, in some cases, elicited bursts of action potentials. Our data reveal glutamatergic synaptic circuits that interconnect the magnocellular nuclei and that can be activated by norepinephrine. These internuclear glutamatergic circuits may provide the functional architecture to support burst generation and/or burst synchronization in hypothalamic magnocellular neurons under conditions of activation.  相似文献   

17.
The singing behavior of songbirds has been investigated as a model of sequence learning and production. The song of the Bengalese finch, Lonchura striata var. domestica, is well described by a finite state automaton including a stochastic transition of the note sequence, which can be regarded as a higher-order Markov process. Focusing on the neural structure of songbirds, we propose a neural network model that generates higher-order Markov processes. The neurons in the robust nucleus of the archistriatum (RA) encode each note; they are activated by RA-projecting neurons in the HVC (used as a proper name). We hypothesize that the same note included in different chunks is encoded by distinct RA-projecting neuron groups. From this assumption, the output sequence of RA is a higher-order Markov process, even though the RA-projecting neurons in the HVC fire on first-order Markov processes. We developed a neural network model of the local circuits in the HVC that explains the mechanism by which RA-projecting neurons transit stochastically on first-order Markov processes. Numerical simulation showed that this model can generate first-order Markov process song sequences.  相似文献   

18.
It is difficult to design electronic nonlinear devices capable of reproducing complex oscillations because of the lack of general constructive rules, and because of stability problems related to the dynamical robustness of the circuits. This is particularly true for current analog electronic circuits that implement mathematical models of bursting and spiking neurons. Here we describe a novel, four-dimensional and dynamically robust nonlinear analog electronic circuit that is intrinsic excitable, and that displays frequency adaptation bursting and spiking oscillations. Despite differences from the classical Hodgkin–Huxley (HH) neuron model, its bifurcation sequences and dynamical properties are preserved, validating the circuit as a neuron model. The circuit's performance is based on a nonlinear interaction of fast–slow circuit blocks that can be clearly dissected, elucidating burst's starting, sustaining and stopping mechanisms, which may also operate in real neurons. Our analog circuit unit is easily linked and may be useful in building networks that perform in real-time.  相似文献   

19.
Central pattern generators (CPGs) frequently include bursting neurons that serve as pacemakers for rhythm generation. Phase resetting curves (PRCs) can provide insight into mechanisms underlying phase locking in such circuits. PRCs were constructed for a pacemaker bursting complex in the pyloric circuit in the stomatogastric ganglion of the lobster and crab. This complex is comprised of the Anterior Burster (AB) neuron and two Pyloric Dilator (PD) neurons that are all electrically coupled. Artificial excitatory synaptic conductance pulses of different strengths and durations were injected into one of the AB or PD somata using the Dynamic Clamp. Previously, we characterized the inhibitory PRCs by assuming a single slow process that enabled synaptic inputs to trigger switches between an up state in which spiking occurs and a down state in which it does not. Excitation produced five different PRC shapes, which could not be explained with such a simple model. A separate dendritic compartment was required to separate the mechanism that generates the up and down phases of the bursting envelope (1) from synaptic inputs applied at the soma, (2) from axonal spike generation and (3) from a slow process with a slower time scale than burst generation. This study reveals that due to the nonlinear properties and compartmentalization of ionic channels, the response to excitation is more complex than inhibition.  相似文献   

20.
Responses of the antennal thermosensitive neuron of the ground beetle Platynus assimilis to warming from 20 to 50 °C were measured and analysed. During warming, neurons switched from regular spiking to bursting. ISI analysis showed that the number of spikes in the burst and spike frequency within the burst were temperature dependent and may precisely encode unfavourably or dangerously high temperatures in a graded manner. In contrast, regular spikes of the neuron encode moderate temperatures at 20-30 °C. The threshold temperature of spike bursting varied in different neurons from 25 to 47 °C. As a result, the number of bursting neurons increased with temperature increase. Therefore, in addition to the burst characteristics, the total number of bursting neurons may also contain useful information on external temperature. A relationship between the spike bursts and locomotor activity of the beetles was found which may have importance in behavioural thermoregulation of the species. At 44.4 ± 0.6 °C, first indications of partial paralysis (of the hind legs) were observed. We emphasize, that in contrast to various sensory systems studied, the thermoreceptor neuron of P. assimilis has a stable and continuous burst train, no temporal information is encoded in the timing of the bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号