首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
AM 真菌和枯落物互作下两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用 枯落物是植物养分获取和土壤养分转化的关键载体。丛枝菌根(Arbuscular mycorrhizae, AM)对植物养分摄取的影响已被广泛认知。然而,在养分亏缺的喀斯特生境中,不同竞争方式的植物如何通过AM真菌和枯落物利用养分尚不清楚。本研究对两种喀斯特适生植物构树(Broussonetia papyrifera)和云贵鹅耳枥(Carpinus pubescens)进行种内竞争和种  间竞争种植处理,并通过幼套球 囊霉(Glomus etunicatum)接种或不接种处理,以及土壤中添加或不添加两物种叶片混合枯落物处理,测定了植物生物量以及氮、磷、钾浓度等指标,研究植物的生长和养分利用。研究结果表明,AM真菌对两种植物养分摄取影响不同,AM真菌显著提高了种内和种间竞争下构树的养分摄取量,但降低了云贵鹅耳枥的养分摄取量。种间竞争下接种AM真菌,枯落物添加促进了云贵鹅耳枥对氮的摄取,抑制了构树对氮的摄取。接种AM真菌和添加枯落物条件下,种间竞争的构树对氮、磷和钾的摄取量及云贵鹅耳枥对氮的摄取量均高于种内竞争;种间竞争下两物种养分竞争力呈现明显差异,即构树对磷和钾养分竞争力显著提高,对氮则不显著;云贵鹅耳枥仅对钾的养分竞争力显著降低,对氮和磷则无显著影响。这些结果说明,在AM真菌与枯落物相互作用下,两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用。  相似文献   

2.
Arbuscular mycorrhizal (AM) fungi can influence plant nutrient uptake and, therefore, may alter interspecific plant competition. However, the role of AM fungi in subtropical tree competition is poorly understood. In this study, we investigated the effects of AM fungus identity (four species) and diversity (a mixture of the same four species) on the competitive relationships between seedlings of a pioneer tree Rhus chinensis and a late-pioneer tree Celtis sinensis, and between R. chinensis and a mid-successional tree Cinnamomum camphora. In seedlings, AM fungi significantly promoted a competitive advantage of R. chinensis over both Ce. sinensis and Ci. camphora. Furthermore, the extent to which AM fungi affected interspecific plant competition outcomes was dependent on AM fungus identity, and the effect of AM fungus diversity on interspecific competition outcomes may derive from the most beneficial AM fungal species.  相似文献   

3.
We were interested in the role of arbuscular mycorrhiza (AM) in the competition between plants of different sizes. A pot experiment of factorial design was established, in which AM root colonization and competition were used as treatments. Five-week-old Prunella vulgaris seedlings were chosen as target plants (i.e. plants whose response to competition was studied) and the following (13 replicates of each) were used as neighbours: (1) a large, 10-week-old P. vulgaris, (2) two P. vulgaris seedlings, and (3) a large, 10-week-old Fragaria vesca. In the experiment where small neighbours were grown together with small target plants, competition did not reduce target plant weight significantly, compared to the other two treatments. The competitive effects of large neighbours were significant, regardless of species (both older neighbours reduced the weights of target plants similarly), but there was a clear difference between intra- and interspecific competition when plants were mycorrhizal. In intraspecific competition with a large neighbour, the target plant shoot weight was reduced 24% when inoculated with AM. Thus, AM amplified rather than balanced intraspecific competition. In interspecific competition with old F. vesca, the shoot weights of target plants were 22% greater when inoculated with AM than when non-mycorrhizal. The results showed that, for given soil condition, AM might increase species diversity by increasing competitive intraspecific suppression and decreasing the interspecific suppression of small plants by larger neighbours.  相似文献   

4.
  • Plants usually interact with other plants, and the outcome of such interaction ranges from facilitation to competition depending on the identity of the plants, including their sexual expression. Arbuscular mycorrhizal (AM) fungi have been shown to modify competitive interactions in plants. However, few studies have evaluated how AM fungi influence plant intraspecific and interspecific interactions in dioecious species.
  • The competitive abilities of female and male plants of Antennaria dioica were examined in a greenhouse experiment. Females and males were grown in the following competitive settings: (i) without competition, (ii) with intrasexual competition, (iii) with intersexual competition, and (iv) with interspecific competition by Hieracium pilosella – a plant with similar characteristics to A. dioica. Half of the pots were grown with Claroideoglomus claroideum, an AM fungus isolated from the same habitat as the plant material. We evaluated plant survival, growth, flowering phenology, and production of AM fungal structures.
  • Plant survival was unaffected by competition or AM fungi. Competition and the presence of AM fungi reduced plant biomass. However, the sexes responded differently to the interaction between fungal and competition treatments. Both intra‐ and interspecific competition results were sex‐specific, and in general, female performance was reduced by AM colonization. Plant competition or sex did not affect the intraradical structures, extraradical hyphae, or spore production of the AM fungus.
  • These findings suggest that plant sexual differences affect fundamental processes such as competitive ability and symbiotic relationships with AM fungi.
  相似文献   

5.
Aims Root interactions between neighbour plants represent a fundamental aspect of the competitive dynamics in pure stand and mixed cropping systems. The comprehension of such phenomena places big methodological challenges, and still needs clarification. The objectives of this work were (i) to test if a species with coloured roots can be used to examine the interaction in a legume-non-legume intercropping system; (ii) to verify the importance of initial root growth on the successive root development of mixture component plants; (iii) to test if the root interaction in the shallow layers has consequences for deep root growth and (iv) to compare the effect of intraspecific and interspecific competition on root development and biomass growth.Methods A detailed study on root growth and interaction was carried out using rhizotron tubes where two legume species were grown in pure stands or were intercropped with red beet, a variety of Beta vulgaris L. with clear red roots. Within the rhizotrons, the three species were grown either without competitors, with two plants of the same species to measure intraspecific competition or with one legume and one red beet plant to study interspecific competition. The use of mixtures where one component has clearly coloured roots, together with several scalar measurements of root depth and proliferation, allowed the measurement of the root system of each species when grown in the mixtures.Important findings The use of rhizotron tubes coupled with species with coloured roots represented a valuable method to study the belowground interaction in mixed cropping systems. The initial root growth was a very important feature for the subsequent dominance of a species and it was not related to seed dimension. Initial root growth was also important because the root interactions in the shallower soil layers were found to influence the root growth in deeper soil. The root system of the red beet showed much faster and deeper growth than that of the legumes, and made red beet the dominant component in the mixtures while the legume root system was confined to the shallower soil layer. Intraspecific competition was well tolerated by the legumes, but it was limiting for the highly competitive red beet. The outcome of root interaction between neighbour plants was confirmed to be species-specific as it changed according to the intensity of the competitive effect/response of each species of the mixture: both legumes were slightly affected by the intraspecific and highly affected by interspecific competition while red beet was more affected by intraspecific competition but strongly dominant when intercropped with legumes.  相似文献   

6.
Plant species vary in their growth response to arbuscular mycorrhizal (AM) fungi, with responses ranging from negative to positive. Differences in response to AM fungi may affect competition between plant species, influencing their ability to coexist. We hypothesized that positively responding species, whose growth is stimulated by AM fungi, will experience stronger intraspecific competition and weaker interspecific competition in soil containing AM fungi, while neutrally or negatively responding species should experience weaker intraspecific and stronger interspecific competition. We grew Plantago lanceolata, which responds positively to AM fungi, and Bromus inermis, which responds negatively to AM fungi, in an additive response surface competition experiment that varied the total density and relative frequency of each species. Plants were grown in sterilized background soil that had been inoculated with whole soil biota, which includes AM fungi, or a microbial wash, that contained other soil microbes but no AM fungi, or in sterilized soil that contained no biota. The positively responding P. lanceolata was more strongly limited by intraspecific than interspecific competition when AM fungi were present. By contrast, the presence of AM fungi decreased the strength of intraspecific competition experienced by the negatively responding B. inermis. Because AM fungi are almost always present in soil, strong intraspecific competition in positively responding species would prevent them from outcompeting species that respond neutrally or negatively to AM fungi. The potential for increased intraspecific competition to offset growth benefits of AM fungi could, therefore, be a stabilizing mechanism that promotes coexistence among plant species.  相似文献   

7.
Under Mediterranean climate, oilseed rape is subjected especially to the competition of weeds with respect to water. Herbicides registered for this crop do not effectively control species of the same family, in particular Sinapis alba and Sinapis arvensis. Moreover, there are no results of the effect of plant density on the competitiveness of these species. The purpose of this experiment was to determine if the competitiveness of the species varies according to the total density. The experiment was carried out in pots under greenhouse conditions, according to a replacement series method. Plant densities tested were 2, 4 and 8 plants per pot. The results of the replacement series diagram and those of relative crowding coefficients showed that Brassica napus was the most competitive, whatever the density is. This classification is explained primarily by leaf area. Indeed, the intraspecific competition due to B. napus has affected more its leaf area than the interspecific competition. Conversely, the intraspecific competition due to S. arvensis has less affected its leaf area than the interspecific competition. Regarding S. alba, the intraspecific competition effect was less severe than the interspecific competition effect due to B. napus and more severe than the interspecific competition effect due to S. arvensis on S. alba  相似文献   

8.
When two organisms interact over a potentially limiting resource, several outcomes are possible (e.g. neither affected, both equally affected, one affected more than the other). The outcome depends on a variety of factors, both internal and external to the organism. We performed a laboratory experiment to investigate the outcome of potential competitive interactions between tadpoles of the green frog ( Rana clamitans ) and the gray treefrog ( Hyla versicolor ), and to examine the factors that may explain the outcome of the interaction. We found that competition between these two species was asymmetric. Hyla versicolor tadpoles were more affected by intraspecific competition than interspecific competition (i.e. grew faster when grown with heterospecifics than conspecifics); whereas, R . clamitans tadpoles were more affected by interspecific competition than intraspecific competition (i.e. grew faster when grown with conspecifics than heterospecifics). Based on behavioral observations, this result could not be explained on the basis of activity levels, a trait previously linked to competitive ability in tadpoles. However, differences in initial body size may help explain the observed results; the gray treefrog tadpoles were larger than the green frog tadpoles.  相似文献   

9.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

10.
Abstract:  The intraspecific and interspecific competition among the adults of three common grasshoppers, Angaracris rhodopa (Fischer-Waldheim), Chorthippus dubius (Zubovsky) and Chorthippus fallax (Zubovsky) was investigated on Ganjia High Mountain Grassland in north-west China. The results indicated a strong intraspecific competition within species at high densities. The interspecific competition between the larger-sized species, A. rhodopa , and the smaller-sized species, C. dubius or C. fallax , was weak, while competition between C. dubius and C. fallax was strong. An asymmetric competitive interaction in mortality and fecundity associated with the diet and size was observed among the three species. Competition was strong between the two species that had a similar diet. The large-sized species had higher mortality rates and lower fecundity than the smaller-sized species. Intraspecific competition between the three species was mainly affected by food limitation, while interspecific competition was mainly associated with food limitation as well as the grasshoppers' adaptation to the environment.  相似文献   

11.
Two experiments (winter and summer) were conducted in outdoor tanks using addition-series methods to evaluate the impact of specialized feeding by two biological control agents,Hydrellia pakistanaeDeonier andBagous hydrillaeO'Brien, on competitive interactions between hydrilla [Hydrilla verticillata(L.f.) Royle] and vallisneria (Vallisneria americanaMichx). Competitive abilities of each plant species were determined using the reciprocal-yield model of mean plant weight. In the absence of the biocontrol agents, intraspecific competition from hydrilla on itself was 8.3 times stronger than interspecific competition from vallisneria.Hydrellia pakistanaeinterfered with hydrilla canopy formation by removing as much as 80% of the plant biomass in the top 30 cm of the water column. Damage byH. pakistanaealso caused a 43% reduction in hydrilla tuber production during the winter experiment. Similarly,B. hydrillaecaused up to a 48% reduction in hydrilla plant weight in the summer experiment. Neither insect species damaged vallisneria. As a result, there were significant shifts in the competitive balance between hydrilla and vallisneria due to selective insect feedings. In the presence ofH. pakistanae, hydrilla intraspecific competition was nearly equal to interspecific competition from vallisneria, indicating that hydrilla had lost its competitive edge over vallisneria.Bagous hydrillaealso produced similar, but smaller, shifts in the relative competitive abilities of hydrilla and vallisneria. These results indicate that biological control agents can disrupt the competitive balance between plant species in favor of native species, thus adding another element to the weed biological control strategies.  相似文献   

12.
红花尔基自然保护区天然樟子松林种内种间竞争分析   总被引:9,自引:1,他引:8  
运用Hegyi单木竞争指数分析了内蒙古红花尔基自然保护区天然樟子松(Pinus sylvestris var.mongolica Litv.)林内所有胸径大于2cm的樟子松、山杨(Populus davidiana Dode.)、白桦(Betula platyphylla Suk.)和山荆子(Malus baccata L.)的种内和种间竞争强度。结果表明,样地中主要的竞争木和对象木均为樟子松和白桦;樟子松的种内竞争强度(0.534)远大于种间竞争强度。随径级的增大,樟子松的种内竞争强度逐渐减小,且与胸径存在幂函数关系CI=A·D^-B。胸径达到30cm后,樟子松种内竞争强度变化不明显。作为竞争木,樟子松对其他树种产生了较大的竞争压力。  相似文献   

13.
Exotic plant invasions are a serious concern for land managers and conservationists. There is evidence that increased nitrogen availability favors exotic species and decreased nitrogen availability favors non-weedy native species. This study was conducted to test the effect of nitrogen availability on competition between two grass species with contrasting life histories, cheatgrass (Bromus tectorum), a North American exotic, and blue grama (Bouteloua gracilis), a North American native. We investigated the effects of nitrogen availability and competition on aboveground biomass, belowground biomass, height, and % nitrogen tissue concentrations by growing the two species in the greenhouse under five levels of nitrogen and six levels of competition. Nitrogen availability affected competition between Bromus tectorum and Bouteloua gracilis. At the lowest level of N availability, neither species was affected by competition. As N availability increased, aboveground biomass gain of Bromus was more negatively affected by intraspecific competition relative to interspecific competition while the opposite occurred for Bouteloua. At the competition level at which each species gained the most aboveground biomass, Bromus had a linear response to increasing N availability while the response of Bouteloua was asymptotic. Our results do provide some support for the theory that fast growing exotic species have a rapid response to nutrient enrichment while native non-weedy species do not, and that low N levels can reduce competitive pressure from the exotic on the native.  相似文献   

14.
Summary Changes in plant growth and competitive balance between pairs of competing species were documented as a result of supplementary ultraviolet-B radiation (principally in the 290–315 nm waveband) under field conditions. This component of the terrestrial solar spectrum would be intensified if the atmospheric ozone layer were reduced. A method for calculating and statistically analyzing relative crowding coefficients was developed and used to evaluate the competitive status of the species pairs sown in a modified replacement series. The effect of the supplementary UV-B irradiance was generally detrimental to plant growth, and was reflected in decreased leaf area, biomass, height and density as well as changes in competitive balance for various species. For some species, interspecific competition apparently accentuated the effect of the UV-B radiation, while more intense intraspecific competition may have had the same effect for other species. A few species when grown in a situation of more severe mutual interspecific competition exhibited enhanced growth under the UV-B radiation treatment. This, however, was usually associated with a detrimental effect of the radiation on its competitor and thus was likely the result of its improved competitive circumstance rather than a beneficial physiological effect of the radiation.  相似文献   

15.
Container-inhabiting mosquito species are subject to both intraspecific and interspecific competition during larval development in resource-limited habitats. The arrival of an invasive species, Aedes albopictus, in the U.S. has altered competitive interactions among container-inhabiting mosquito species and, in some cases, has led to displacement of these species. Resource enrichment of container habitats has been shown to alleviate competitive interactions and to promote species co-existence; however, the importance of the timing of enrichment has yet to be explored. Larval competition between Ae. albopictus and a native species, Ochlerotatus triseriatus, was explored when resources were added either gradually or in a single pulse. Replacement series experiments revealed that Ae. albopictus was able to outcompete and displace Oc. triseriatus via resource monopolization when all resources were made available simultaneously; however, when the same resource amount was added over time, survival was high for both species, leading to co-existence. Timing of resource input also had an effect in monospecific treatments, indicating that intraspecific competition impacts survival as well. Duration of larval development was influenced by both species presence and by timing of resource input for Oc. triseriatus. These results indicate competitive outcome is condition-specific and that timing of resource input can determine whether a dominant invasive competitor displaces a native species, or if the two species are able to co-exist. Both intraspecific and interspecific competition occur at different temporal scales due to species-specific differences in larval developmental time. Timing of resource availability in container habitats can impact mosquito survival via competitive interactions, which can ultimately influence vector population size and behavior, possibly influencing vector-borne disease transmission.  相似文献   

16.
Aims Change in nitrogen (N) availability regulates phosphorus (P) acquisition and potentially alters the competition among native species and invasive weeds. This study determines how current and projected N deposition affect the growth, the intraspecific and interspecific competitive ability of native and invasive plants in calcareous soils with low P availability.  相似文献   

17.
Growth chamber experiments with rapid-cycling Brassica rapa were designed to estimate the signs and magnitudes of the genetic correlations for plant performance in each of three conditions: no-competition (isolated plants), intraspecific competition, and interspecific competition with Raphanus sativa. Biomass and flower number were highest in the no-competition treatment, intermediate under intraspecific competition, and lowest under interspecific competition. Significant among-family variation in biomass and flower number was found under each regime. The mean family performance (biomass or flower number) in the no-competition treatment was significantly positively correlated with the performance in only one of the competitive treatments (for biomass in the intraspecific treatment). For both biomass and flower number there was a significant positive correlation between family means in the intra- and interspecific regimes. These correlations were greater in magnitude than those for the comparison between no-competition and competition (intra- or interspecific) treatments. Our results suggest that the importance of traits affecting plant performance is environment-dependent; the performance of a family grown without competition was a poor predictor of performance with competition, while the performance of families grown under intra- and interspecific competition was positively correlated.  相似文献   

18.
Summary The spatial patterns and diets of three desert ant species were examined. The results indicate that food competition may account for the spatial arrangement of these species, and that only intraspecific interactions may be required. Each ant species was significantly overdispersed, and the average intraspecific nearest neighbor distances were greater than the interspecific nearest neighbor distances. A test of pairwise spatial arrangment showed that all three species pairs were aggregated interspecifically. The level of the interspecific aggregation was related to the diet similarity of the species. The two species pairs with the lowest diet overlaps were significantly aggregated, and the species pair with the most similar diets was not significantly aggregated. Pairwise dietary overlaps between colonies showed that average intraspecific overlaps were significantly greater than interspecific diet overlaps. Furthermore, the diet overlap was significantly positively correlated to the mean nearest neighbor distance for the three intraspecific and three interspecific comparisons. These data indicate competition for food, especially within species, may be regulating the intercolony distances of these ant species. A computer simulation tested whether only intraspecific territoriality is necessary to produce the observed nearest neighbor distances. A simulation that placed colonies randomly on a patch confirmed that these colonies are intraspecifically overdispersed. By adding intraspecific territoriality, the simulation nearest neighbor distances fit the empirical data reasonably well. Thus interspecific competitive interactions seem unnecessary to account for the spatial arrangement of these species.  相似文献   

19.
Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra‐ and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five‐fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra‐ and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.  相似文献   

20.
利用Hegyi的竞争指数模型,分析了西双版纳热带季节雨林的主要类型绒毛番龙眼群落中林冠种群种内和种间的竞争强度及种群和个体在群落中的竞争干扰状态.结果表明,季节雨林中林冠种群的种间竞争大于种内竞争,每个林冠种群一般与多个其它林冠种群发生竞争.多数种群既被竞争种干扰,又干扰竞争种.个体在群落中所处的层次越高,受到的竞争干扰越小,下层中的个体多数处于受压迫状态.群落中没有完全的竞争优胜者.只有成年个体处于竞争优势地位,幼苗、幼树又能在受压迫中生存的种群,才能在群落中保持长期存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号