首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4CD8 double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4+CD8+ double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4+CD8+ thymocytes, resulting in reduced numbers of CD4+CD8+ cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4+CD8+ cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.  相似文献   

3.
TCRμ is an unconventional TCR that was first discovered in marsupials and appears to be absent from placental mammals and nonmammals. In this study, we show that TCRμ is also present in the duckbill platypus, an egg-laying monotreme, consistent with TCRμ being ancient and present in the last common ancestor of all extant mammals. As in marsupials, platypus TCRμ is expressed in a form containing double V domains. These V domains more closely resemble Ab V than that of conventional TCR. Platypus TCRμ differs from its marsupial homolog by requiring two rounds of somatic DNA recombination to assemble both V exons and has a genomic organization resembling the likely ancestral form of the receptor genes. These results demonstrate that the ancestors of placental mammals would have had TCRμ but it has been lost from this lineage.  相似文献   

4.
Channel catfish, Ictalurus punctatus, T cell receptors (TCR) γ and δ were identified by mining of expressed sequence tag databases, and full-length sequences were obtained by 5′-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), diversity (D), joining (J), and constant (C) regions. Three TCRγ V families, seven TCRγ J sequences, and three TCRγ C sequences were identified from sequencing of cDNA. Primer walking on bacterial artificial chromosomes (BACs) confirmed that the TRG locus contained seven TRGJ segments and indicated that the locus consists of (Vγ3-Jγ6-Cγ2)–(Vγ1n-Jγ7-Cγ3)–(Vγ2-Jγ5-Jγ4-Jγ3-Jγ2-Jγ1-Cγ1). In comparison for TCRδ, two V families, four TCRδ D sequences, one TCRδ J sequence, and one TCRδ C sequence were identified by cDNA sequencing. Importantly, the finding that some catfish TCRδ cDNAs contain TCR Vα-D-Jδ rearrangements and some TCRα cDNAs contain Vδ-Jα rearrangements strongly implies that the catfish TRA and TRD loci are linked. Finally, primer walking on BACs and Southern blotting suggest that catfish have four TRDD gene segments and a single TRDJ and TRDC gene. As in most vertebrates, all three reading frames of each of the catfish TRDD segments can be used in functional rearrangements, and more than one TRDD segment can be used in a single rearrangement. As expected, catfish TCRδ CDR3 regions are longer and more diverse than TCRγ CDR3 regions, and as a group they utilize more nucleotide additions and contain more nucleotide deletions than catfish TCRγ rearrangements.  相似文献   

5.
NKT cells respond to a variety of CD1d-restricted glycolipid Ags that are structurally related to the prototypic Ag α-galactosylceramide (α-GalCer). A modified analog of α-GalCer with a carbon-based glycosidic linkage (α-C-GalCer) has generated great interest because of its apparent ability to promote prolonged, Th1-biased immune responses. In this study, we report the activation of spleen NKT cells to α-C-GalCer, and related C-glycoside ligands, is weaker than that of α-GalCer. Furthermore, the Vβ8.2 and Vβ7 NKT TCR affinity for CD1d-α-C-GalCer, and some related analogs, is ~10-fold lower than that for the NKT TCR-CD1d-α-GalCer interaction. Nevertheless, the crystal structure of the Vβ8.2 NKT TCR-CD1d-α-C-GalCer complex is similar to that of the corresponding NKT TCR-CD1d-α-GalCer complex, although subtle differences at the interface provide a basis for understanding the lower affinity of the NKT TCR-CD1d-α-C-GalCer interaction. Our findings support the concept that for CD1d-restricted NKT cells, altered glycolipid ligands can promote markedly different responses while adopting similar TCR-docking topologies.  相似文献   

6.
7.
8.
9.
10.
High-throughput sequencing has recently been applied to profile the high diversity of antibodyome/B cell receptors (BCRs) and T cell receptors (TCRs) among immune cells. To date, Multiplex PCR (MPCR) and 5’RACE are predominately used to enrich rearranged BCRs and TCRs. Both approaches have advantages and disadvantages; however, a systematic evaluation and direct comparison of them would benefit researchers in the selection of the most suitable method. In this study, we used both pooled control plasmids and spiked-in cells to benchmark the MPCR bias. RNA from three healthy donors was subsequently processed with the two methods to perform a comparative evaluation of the TCR β chain sequences. Both approaches demonstrated high reproducibility (R2 = 0.9958 and 0.9878, respectively). No differences in gene usage were identified for most V/J genes (>60%), and an average of 52.03% of the CDR3 amino acid sequences overlapped. MPCR exhibited a certain degree of bias, in which the usage of several genes deviated from 5’RACE, and some V-J pairings were lost. In contrast, there was a smaller rate of effective data from 5’RACE (11.25% less compared with MPCR). Nevertheless, the methodological variability was smaller compared with the biological variability. Through direct comparison, these findings provide novel insights into the two experimental methods, which will prove to be valuable in immune repertoire research and its interpretation.  相似文献   

11.
TCR基因修饰T细胞的过继性免疫治疗是指将识别肿瘤抗原的特异性TCR基因转导至外周血T细胞,经大量扩增后回输给患者,从而发挥抗肿瘤效应的一种治疗技术。目前TCR基因治疗所面临的关键问题之一是如何改造修饰转TCR基因使得转TCR α链和β链在T细胞表面优先配对以提高转T细胞的功能,并避免off-target反应毒性的产生。最近,各种基因修饰策略被用于优化转TCR基因配对和减少错配。介绍了近年来针对TCR基因进行修饰改造的各种策略及TCR基因治疗的临床试验。  相似文献   

12.
Analysis of the paired i.e. matching TCR α- and β-chain rearrangements of single human T cells is required for a precise investigation of clonal diversity, tissue distribution and specificity of protective and pathologic T-cell mediated immune responses. Here we describe a multiplex RT-PCR based technology, which for the first time allows for an unbiased analysis of the complete sequences of both α- and β-chains of TCR from single T cells. We validated our technology by the analysis of the pathologic T-cell infiltrates from tissue lesions of two T-cell mediated autoimmune diseases, psoriasis vulgaris (PV) and multiple sclerosis (MS). In both disorders we could detect various T cell clones as defined by multiple T cells with identical α- and β-chain rearrangements distributed across the tissue lesions. In PV, single cell TCR analysis of lesional T cells identified clonal CD8(+) T cell expansions that predominated in the epidermis of psoriatic plaques. An MS brain lesion contained two dominant CD8(+) T-cell clones that extended over the white and grey matter and meninges. In both diseases several clonally expanded T cells carried dual TCRs composed of one Vβ and two different Vα-chain rearrangements. These results show that our technology is an efficient instrument to analyse αβ-T cell responses with single cell resolution in man. It should facilitate essential new insights into the mechanisms of protective and pathologic immunity in many human T-cell mediated conditions and allow for resurrecting functional TCRs from any αβ-T cell of choice that can be used for investigating their specificity.  相似文献   

13.
A promising strategy for cancer treatment is adoptive gene therapy/immunotherapy by genetically modifying T cells with a chimeric T cell receptor (cTCR). When transduced T cells (T-bodies) specifically bind to tumor antigens through cTCR, they will become cytotoxic T lymphocytes (CTL) and lyse the tumor cells in a non-major histocompatibility complex (MHC)-restricted manner. Both the FcR gamma-chain and the TCR zeta-chain have been used to construct such cTCR, and both have shown specific cytolytic functions against tumor cells. However, most researchers believe that the zeta-chain generates stronger cytolytic activities against tumor than the gamma-chain and therefore would be a better candidate for cTCR construction. On the other hand, because of the lack of costimulation signaling in such constructs, the T-body might cause activation-induced T cell death (AICD) when bound to tumor antigens. Therefore, one can argue that the gamma-chain might generate less AICD than the zeta-chain because the gamma-chain has only one immunoreceptor tyrosine-based activation motif (ITAM), and the cytolytic activities can be therefore recycled. Two cTCR, GAHgamma and GAHzeta, were constructed and evaluated for cytokine production, specific cytolytic function and AICD in T-bodies after exposure to tumor cells. Using EGP-2-positive LS174T colorectal carcinoma cells as targets, there was no substantial difference observed between a gamma-chain or zeta-chain as the T-body signaling moiety in terms of specific cytolytic functions and induced cytokine production. This paper also demonstrates that, in the absence of a costimulation system, tumor antigen may not trigger apoptosis of T cells transduced with a cTCR carrying either an FcR gamma-chain or a TCR zeta-chain. These observations challenge current ideas about the role of ITAM in T cell activation.  相似文献   

14.
Ag receptor loci are regulated to promote allelic exclusion, but the mechanisms are not well understood. Assembly of a functional TCR β-chain gene triggers feedback inhibition of V(β)-to-DJ(β) recombination in double-positive (DP) thymocytes, which correlates with reduced V(β) chromatin accessibility and a locus conformational change that separates V(β) from DJ(β) gene segments. We previously generated a Tcrb allele that maintained V(β) accessibility but was still subject to feedback inhibition in DP thymocytes. We have now further analyzed the contributions of chromatin accessibility and locus conformation to feedback inhibition using two novel TCR alleles. We show that reduced V(β) accessibility and increased distance between V(β) and DJ(β) gene segments both enforce feedback inhibition in DP thymocytes.  相似文献   

15.
The pmel-1 T cell receptor transgenic mouse has been extensively employed as an ideal model system to study the mechanisms of tumor immunology, CD8+ T cell differentiation, autoimmunity and adoptive immunotherapy. The ‘zygosity’ of the transgene affects the transgene expression levels and may compromise optimal breeding scheme design. However, the integration sites for the pmel-1 mouse have remained uncharacterized. This is also true for many other commonly used transgenic mice created before the modern era of rapid and inexpensive next-generation sequencing. Here, we show that whole genome sequencing can be used to determine the exact pmel-1 genomic integration site, even with relatively ‘shallow’ (8X) coverage. The results were used to develop a validated polymerase chain reaction-based genotyping assay. For the first time, we provide a quick and convenient polymerase chain reaction method to determine the dosage of pmel-1 transgene for this freely and publically available mouse resource. We also demonstrate that next-generation sequencing provides a feasible approach for mapping foreign DNA integration sites, even when information of the original vector sequences is only partially known.  相似文献   

16.
17.
The common marmoset (Callithrix jacchus) is useful as a nonhuman primate model of human diseases. Although the marmoset model has great potential for studying autoimmune diseases and immune responses against pathogens, little information is available regarding the genes involved in adaptive immunity. Here, we identified one TCR α constant (TRAC), 46 TRAJ (joining), and 35 TRAV (variable) segments from marmoset cDNA. Marmoset TRAC, TRAJ, and TRAV shared 80%, 68–100%, and 79–98% identity with their human counterparts at the amino acid level, respectively. The amino acid sequences were less conserved in TRAC than in TCRβ chain constant (TRBC). Comparative analysis of TRAV between marmosets and humans showed that the rates of synonymous substitutions per site (d S ) were not significantly different between the framework regions (FRs) and complementarity determining regions (CDRs), whereas the rates of nonsynonymous substitutions per site (d N ) were significantly lower in the FRs than in CDRs. Interestingly, the d N values of the CDRs were greater for TRBV than TRAV. These results suggested that after the divergence of Catarrhini from Platyrrhini, amino acid substitutions were decreased in the FRs by purifying selection and occurred more frequently in CDRβ than in CDRα by positive selection, probably depending on structural and functional constraints. This study provides not only useful information facilitating the investigation of adaptive immunity using the marmoset model but also new insight into the molecular evolution of the TCR heterodimer in primate species.  相似文献   

18.
The γδ T cell receptor (TCR) differs from immunoglobulin and αβ TCR in its overall binding mode. In human, genes δ1, δ2, and δ3 are used for TCRδ chains. Previously, we have studied antigen binding determinants of TCRδ2 derived from dominant γδ T cells residing in peripheral blood. In this study we have investigated the critical determinants for antigen recognition and TCR function in TCRδ1 originated from gastric tumor-infiltrating γδ T lymphocytes using three independent experimental strategies including complementary determining region 3 (CDR3) of TCRδ1 (CDR3δ1)-peptide mediated binding, CDR3δ1-grafted TCR fusion protein-mediated binding, and TCRγ4δ1- and mutant-expressing cell-mediated binding. All three approaches consistently showed that the conserved flanking V and J sequences but not the diverse D segment in CDR3δ1 determine the antigen binding. Most importantly, we found that mutations in the V and J regions of CDR3δ1 also abolish the assembly of TCR and TCR-CD3 complexes in TCRγ4δ1-transduced J.RT3-T3.5 cells. Together with our previous studies on CDR3δ2 binding, our finding suggests that both human TCRδ1 and TCRδ2 recognize antigen predominately via flanking V and J regions. These results indicate that TCRγδ recognizes antigens using conserved parts in their CDR3, which provides an explanation for a diverse repertoire of γδTCRs only recognizing a limited number of antigens.  相似文献   

19.
The thymus provides a specialized microenvironment in which distinct subsets of thymic epithelial cells (TECs) support T-cell development. Here, we describe the significance of cortical TECs (cTECs) in T-cell development, using a newly established mouse model of cTEC deficiency. The deficiency of mature cTECs caused a massive loss of thymic cellularity and impaired the development of αβT cells and invariant natural killer T cells. Unexpectedly, the differentiation of certain γδT-cell subpopulations—interleukin-17-producing Vγ4 and Vγ6 cells—was strongly dysregulated, resulting in the perturbation of γδT-mediated inflammatory responses in peripheral tissues. These findings show that cTECs contribute to the shaping of the TCR repertoire, not only of “conventional” αβT cells but also of inflammatory “innate” γδT cells.  相似文献   

20.
Lck and Fyn, members of the Src family of tyrosine kinases, are key components of the αβTCR-coupled signaling pathway. While it is generally accepted that both Lck and Fyn positively regulate signal transduction by the αβTCR, recent studies have shown that Lck and Fyn have distinct functions in this signaling pathway, with Lck being a positive regulator and Fyn being a negative regulator of αβTCR signal transduction. To determine whether Lck and Fyn also differentially regulate γδTCR signal transduction, we analyzed γδ T cell development and function in mice with reduced Lck or Fyn expression levels. We found that reducing Lck or Fyn levels altered the strength of the γδTCR signaling response, with low levels of Lck weakening γδTCR signal strength and low levels of Fyn augmenting γδTCR signal strength. These alterations in γδTCR signal strength had profound effects not only on αβ/γδ lineage choice, but also on γδ thymocyte maturation and γδ T cell effector function. These results indicate that the cellular levels of Lck and Fyn play a role in regulating the strength of the γδTCR signaling response at different stages in the life of the γδ T cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号