首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

2.
Stem elongation and flowering are two processes induced by long-day (LD) treatment in Silene armeria L. Whereas photoperiodic control of stem growth is mediated by gibberellins (GAs), the flowering response cannot be obtained by GA applications. Microscopic observations on early cellular changes in the shoot meristem following LD induction or GA treatment in short days (SD) were combined with GA analyses of stem sections at various distances below the shoot apex. The earliest effects of both LD and GA induction on the subapical meristem were an increase in the number of cells per cell file and a reduction of cell length in the meristematic tissue approx. 1.0–3.0 mm below the shoot apex. Within 8 d after the beginning of LD induction or after GA application, the cells in the subapical meristem were oriented in long files. In induced tips, cellulose deposition occurred mostly in longitudinal walls, indicating that many transverse cell divisions had taken place which, in turn, increased the length of the stem. In contrast to LD induction, GA treatments did not promote the transition from the vegetative to the floral stage. Endogenous GAs were analyzed by selected ion monitoring (SIM), using labeled internal standards, in extracts from transverse sections of the tip at various distances below the apical meristem. In control plants, the levels of the six 13-hydroxy GAs studied (GA53, GA44, GA19, GA20, GA1, and GA8) decreased as the distance from the apical meristem increased. Except for GA53, GA levels were higher in tips of LD-induced plants, particularly in the meristematic zone approx. 0.5–1.5 mm below the apical meristem. In comparison with SD, the highest increase observed was for GA1, the content of which increased 30-fold in the zone 0.5–3.5 mm below the shoot apex. These data indicate a spatial correlation between the accumulation of GA1 and its precursors, and the enhanced mitotic activity which occurs in the subapical meristem of elongating Silene apices.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]- gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA, for [13C]GA8, Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, for advice with mass spectrometry, and Mr. M. Chassagne, I.N.R.A. C.R. Bordeaux, for the photography. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy under contract DE-ACO2-76ERO-1338, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

3.
The effects of differential photoperiodic treatments applied to shoot tips and mature leaves of the long-day (LD) plant Silene armeria L. on growth and flowering responses, and on the levels of endogenous gibberellins (GAs), were investigated. Gibberellins were analyzed by gaschromatography-mass spectrometry and the use of internal standards. Exposure of mature leaves to LD, regardless of the photoperiodic conditions of the shoot tips, short days (SD), LD, or darkness, promoted elongation of the stems and of the immature leaves. Long-day treatment of the mature leaves modified the levels of endogenous GAs in shoot tips kept under LD, SD, or darkness. In shoot tips kept in LD or darkness the levels of GA53 were reduced, whereas the levels of GA19 and GA20 were increased. The contents of GA1 were increased in all three types of shoots: SD twofold, LD fivefold, and darkness eightfold. Dark treatment of the shoot tips on plants of which the mature leaves were grown in SD promoted elongation of the immature etiolated leaves and increased the GA1 content of the shoot tips threefold. However, this treatment did not cause stem elongation. The different photoperiodic treatments applied to the shoot tips did not change the levels of GAs in mature leaves. These results indicate that both LD and dark treatments result in an increase in GA1 in shoot tips. In addition, it is proposed that LD treatment induces the formation of a signal that is transmitted from mature leaves to shoot tips where it enhances the effect of GA on stem elongation.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]-gibberellins and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, East Lansing, for advice with mass spectrometry. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy grant No. DE-FG02-91ER20021, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

4.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

5.
Field pennycress (Thlaspi arvense L.) is a winter annual weed with a cold requirement for stem elongation and flowering. The relative abilities of several native gibberellins (GAs) and GA-precursors to elicit stem growth were compared. Of the eight compounds tested, gibberellin A1, (GA1), GA9, and GA20 caused stem growth in noninduced (no cold treatment) plants. No stem growth was observed in plants treated with ent-kaurene, ent-kaurenol, ent-kaurenoic acid, GA53, or GA8. Moreover, of the biologically active compounds, GA9 was the most active followed closely by GA1. In thermoinduced plants (4-week cold treatment at 6°C) that were continuously treated with 2-chlorocholine chloride to reduce endogenous GA production, GA9 was the most biologically active compound. However, the three kaurenoid GA precursors also promoted stem growth in thermoinduced plants, and were almost as active as GA20. No such increase in activity was observed for either GA[unk] or GA53. The results are discussed in relation to thermoinductive regulation of GA metabolism and its significance to the initiation of stem growth in field pennycress. It is proposed that thermoinduction results in increased conversion of ent-kaurenoic acid to GAs through the C-13 desoxy pathway and that GA9 is the endogenous mediator of thermoinduced stem growth in field pennycress.  相似文献   

6.
The following seven gibberellins (GAs) have been identified by gas chromatography-mass spectrometry in shoots and leaves of the long-day plant Agrostemma githago: GA53, GA44, GA19, GA17, GA20, GA1, and 3-epi-GA1. The levels of these compounds were measured, using selected ion monitoring, during photoperiodic induction. The levels of GA44, GA19, GA17, and GA20 all increased to a peak at eight long days (LD), followed by a decline, while the levels of GA1 and 3-epi-GA1 did not reach a peak until 12 LD. The level of GA53 remained steady over the first 10–12 LD. Later in the LD treatment the levels of GA53, GA44, GA19, and GA17 increased again. The rate of metabolism of all GAs except GA53 was higher after 12–16 LD than under short days. These data thus provide indirect evidence for an effect of photoperiodic induction on GA turnover in A. githago.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - GC-MS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - LD long day(s) - MeTMS trimethylsilylether of the methyl ester - SD short day(s) - SIM selected ion monitoring  相似文献   

7.
In G2 peas (Pisum sativum L.) apical senescence occurs only in long days (LD), and indeterminate growth is associated with elevated gibberellin (GA) levels in the shoot in short days (SD). Metabolism of GA12 aldehyde was investigated by feeding shoots grown in SD or LD with [14C]GA12 aldehyde through the cut end of the stem for 0.5 to 6 hours in the light and analyzing the tissue extract by high performance liquid chromatography. More radioactive products were detected than can be accounted for by the two GA metabolic pathways previously known to be present in peas. Three of the major products appear to be GA conjugates, but an additional pathway(s) of GA metabolism may be present. The levels of putative C20 GAs, [14C]GA53, [14C]GA44, [14C]GA19, and/or [14C] GA17, were all elevated in SD as compared to LD. Putative [14C]GA, was slightly higher in LD than in SD. Putative [14C]GA53 was a major metabolite after 30 minutes of treatment in SD but had declined after longer treatment times to be replaced by elevated levels of putative [14C] GA44 and [14C]GA19/17. Metabolism of GA20 was slow in both photoperiods. Although GA20 and GA19 are the major endogenous GAs as determined by gas chromatography-mass spectrometry, putative [14C]GA20 and [14C]GA19 were never major products of [14C]GA12 aldehyde metabolism. Thus, photoperiod acts in G2 peas to change the rate of GA53 production from GA12 aldehyde, with the levels of the subsequent GAs on the 13-OH pathway being determined by the amount of GA53 being produced.  相似文献   

8.
Plants of Lolium temulentum L. cv. Ceres grown under short days (SDs) can be induced to initiate inflorescences either by exposure to one long day (LD) or by single applications of some gibberellins (GAs), which also enhance the flowering response to one LD. Single doses of up to 25 μg per plant of C-16, 17-dihydro-GA5 were about as effective as GA5 for promoting flowering after one LD but inhibited stem elongation by up to 40% over three weeks. The promotion of flowering but not the inhibition of elongation by 16, 17-dihydro-GA5 was reduced in SDs or in LDs low in far-red (FR) radiation. With shoot apices cultured in vitro, 16, 17-dihydro-GA5 was more florigenic than GA3 for apices excised after one LD of 14 h or more, but less florigenic for apices excised from plants in shorter days. 16, 17-Dihydro-GA5 was ineffective compared with GA1, GA3 and GA5 for α-amylase production by half-seeds of Lolium, a response concordant with its effect on stem elongation. As with GA5, 16, 17-dihydro derivatives of GA1, GA3, GA20 and several other GAs were more effective for flowering and less effective for stem elongation than the GAs from which they were derived. Hydroxylation at C-17 and/or C-16 generally reduced the effectiveness of 16, 17-dihydro-GA5 for flowering. These results extend the known features of GA structure which favour flowering relative to stem elongation in L. temulentum. Moreover, C-16, 17-dihydro-GA5 mimics, in its daylength- and wavelength-dependence and lack of stem elongation, characteristics of the LD stimulus in L. temulentum.  相似文献   

9.
The effects of thermo- and photoperiodicity on elongation growth and on endogenous level of gibberellins (GAs) in Begonia x hiemalis during various phases of the day-night cycle have been studied. Plant tissue was harvested during the day and night cycle after temperature and photoperiodic treatments and analyzed for endogenous GAs using combined gas chromatography and mass spectrometry. Elongation growth increased when the difference between day and night temperature (DIF = DT − NT) increased from a negative value (−9.0 and −4.5°C) to zero and with increasing photoperiod from 8 to 16 h. When applied to the youngest apical leaf, gibberellins A1, A4, and A9 increased the elongation of internodes and petioles. GA4 had a stronger effect on elongation growth than GA1 and GA9. In relative values, the effect of these GAs decreased when DIF increased from −9 to 0°C. The time of applying the GAs during a day and night cycle had no effect on the growth responses. In general, endogenous levels of GA19 and GA20 were higher under negative DIF compared with zero DIF. The level of endogenous GA1 in short day (SD)-grown plants was higher under zero DIF than under negative DIF, but this relationship did not appear in long day (LD)-grown plants. The main effects of photoperiod seem to be a higher level of GA19 and GA1 at SD compared with LD, whereas GA20 and GA9 show the opposite response to photoperiod. No significant differences in endogenous level of GA1, GA9, GA19, and GA20 were found for various time points during the diurnal day and night cycle. Endogenous GA20 was higher in petiole and leaf compared with stem, whereas there were no differences of GA1, GA9, and GA19 between plant parts. No clear relationship was found between elongation of internodes and petioles and levels of endogenous GAs. Received December 26 1996; accepted July 1, 1997  相似文献   

10.
Y L Xu  D A Gage    J A Zeevaart 《Plant physiology》1997,114(4):1471-1476
Arabidopsis thaliana (L.) Heynh. is a quantitative long-day (LD) rosette plant in which stem growth is mediated by gibberellins (CAs). Application of GAs to plants in short-day (SD) conditions resulted in rapid stem elongation and flower formation, with GA4 and GA9 being equally effective, and GA1 showing lower activity. The effects of photoperiod on the levels of endogenous GAs were measured by combined gas chromatography-mass spectrometry with selected ion monitoring. When plants were transferred from SD to LD conditions there was a slight decrease in the level of GA53 and an increase in the levels of C19-GAs, GA9, GA20, GA1, and GA8, indicating that GA 20-oxidase activity is stimulated in LD conditions. Expression of GA5, which encodes GA 20-oxidase, was highest in elongating stems and was correlated with the rate of stem elongation. By contrast, GA4, which encodes 3 beta-hydroxylase, showed low expression in stems and its expression was not correlated with the rate of stem elongation. We conclude that stem elongation in LD conditions is at least in part due to increased expression of GA5, whereas expression of GA4 is not under photoperiodic control.  相似文献   

11.
The physiological basis of dwarfism in a single-gene, recessive mutant of Silene armeria L. was investigated through comparison with a normal strain. Exposure of the normal strain to long days led to stem growth and flower formation while similar exposure of the dwarf strain led only to flowering, with very little stem growth. Application of gibberellin A3 or A4+7 in short days promoted stem elongation in the normal strain, but had a much lesser effect in the dwarf strain. Upon extraction and chromatographic fractionation of the endogenous gibberellins (GAs) in the normal strain of S. armeria, three zones of GA activity were found. An increase in one zone of activity was found in both strains after 1 long day. Neither the quality nor the quantity of the extractable GAs differed greatly between the dwarf and the normal strain. Vegetative dwarf scions, grafted onto fully induced, normal stocks formed flowers, but their growth habit was not changed. Thus, the lack of stem growth in response to long days in the dwarf strain appears to result from a lack of GA sensitivity in the stem tissue of these plants. However, during flower formation dwarf plants did exhibit elongation of the peduncles. This response was suppressed by the growth retardant 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618), and applied GA3 could partially overcome this inhibition. Thus, peduncle elongation in the dwarf strain appears to be regulated by endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - SD short day(s)  相似文献   

12.
Cell-free extracts capable of converting [14C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [14C]-labeled GAs, prepared enzymically from [14C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA12 → GA53 → GA44 → GA19 → GA20. The pH optima for the enzymic conversions of [14C]GA53, [14C]GA44 and [14C]GA19 were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe2+, α-ketoglutarate and O2 for activity, and ascorbate stimulated the conversion of [14C]GA53 and [14C]GA19. Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA53 and GA19 are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA44 remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA20 content of spinach plants in LD than in SD.  相似文献   

13.
Application experiments have suggested that short‐day‐induced cessation of elongation growth in trees is caused by photoperiodic regulation of the conversion of gibberellin GA19 to GA20. In the present study we examined further the photoperiodic control of GA metabolism in trees with focus on the conversion of GA19 in Salix pentandra, hybrid aspen (Populus tremula × tremuloides) and silver birch (Betula pendula) using [17,17‐2H2]‐GA19 or unlabelled GAs in application studies. GA20 and GA1 were able to restore growth also in hybrid aspen and silver birch under short days (SD), whereas GA19 had no or only a very small activity. Contrary to hybrid aspen and S. pentandra, the activity of GA20 in silver birch was significantly lower than that of GA1. Gas chromatography‐mass spectrometry (GC‐MS) analysis revealed a smaller turnover of [2H2]‐GA19 in SD than in long days (LD) in hybrid aspen. No such difference in turnover of [2H2]‐GA19 was observed in photoperiod‐insensitive hybrid aspen overexpressing PHYA. Application of unlabelled GAs to seedlings of S. pentandra, hybrid aspen and silver birch under SD followed by quantification of metabolites by GC‐MS analysis, showed that applied GA19 was not readily converted to GA20 and GA1. Although the sensitivity to GAs is also known to decrease under SD, the present data are in favour of a photoperiodic regulation of the metabolism of GA19in vivo in the woody species S. pentandra, hybrid aspen and silver birch. The data might also suggest that silver birch differs from S. pentandra and hybrid aspen by exhibiting a possible photoperiodic control also of the conversion of GA20 to GA1.  相似文献   

14.
In previous experiments with many gibberellins (GAs) and GA derivatives applied to Lolium temulentum L., quite different structural requirements were evident for stem elongation on the one hand and for the promotion of flowering on the other. Whereas hydroxylation at carbons 12, 13 and 15 enhanced flowering relative to stem growth, the reverse was the case at carbon 3 (L.T. Evans et al. 1990, Planta 182, 97–106). The significance of hydroxylation at carbon 3 is examined in this paper. The application of inhibitors of 3β-hydroxylation, including C/D-ring-rearranged GAs, reduced stem growth but, in the case of the two acylcyclohexanediones, increased the flowering response when applied on the inductive long day. Later applications of the acylcyclohexanediones, made after floral initiation had occurred, were inhibitory to flowering, suggesting that subsequent inflorescence development requires 3β-hydroxylated GAs. Applications of the 3α-hydroxy epimers of GA1, GA3 and GA4 gave slightly less promotion of flowering in comparison with the 3β-hydroxy GAs, but far less promotion of stem elongation, except in the case of 3-epi-GA4, which was comparable to GA4. The 3α-hydroxy epimer of 2,2-dimethyl GA4 gave less promotion of flowering than its 3β-hydroxy epimer but almost no promotion of stem elongation. The 3α-hydroxy epimers of GA3 and 2,2-dimethyl GA4 did not act as competitive inhibitors of the stem elongation elicited by GA3 and 2,2-dimethyl GA4, respectively. These results extend the differences in GA structure which favour flowering as opposed to stem elongation, and indicate that 3-hydroxylation and its epimeric configuration are of much greater importance to stem elongation than to flower initiation in Lolium.  相似文献   

15.
Application of gibberellin A53 (GA53) to short-day (SD)-grown spinach (Spinacia oleracea L.) plants caused an increase in petiole length and leaf angle similar to that found in plants transferred to long days (LD). [2H] GA53 was fed to plants in SD, LD, and in a SD to LD transition experiment, and the metabolites were identified by gas chromatography with selected ion monitoring. After 2, 4, or 6 SD, [2H]GA53 was converted to [2H]GA19 and [2H]GA44. No other metabolites were detected. After 2 LD, only [2H] GA20 was identified. In the transition experiment in which plants were given 4 SD followed by 2 LD, all three metabolites were found. The results demonstrate unequivocally that GA19, GA20, and GA44 are metabolic products of GA53, and strongly suggest that photoperiod regulates GA metabolism, in part, by controlling the conversion of GA19 to GA20.  相似文献   

16.
Despite low activity for stem growth, the gibberellins GA5 and GA6 act as long-day (LD) florigens in Lolium temulentum L. This claim is based on extensive evidence covering GA synthesis in LD in the induced leaf and their transport to the shoot apex where they act in a dose-dependent manner. GAs also act as a LD florigen in association with cold vernalization of L. perenne. In contrast, highly bioactive GA4 and, possibly, GA1 are important florigens in Arabidopsis thaliana (L.) Heynh. This species contrast reflects differences in GA deactivation, which is unimportant for Arabidopsis but dominant in L. temulentum. It is unclear if GAs participate in flowering responses of short-day (SD) species since it is LD, which up-regulate enzymes for GA biosynthesis. Sugars (sucrose) may also act directly as a florigen and, specifically, with increase in photosynthesis as in LD or when light intensity is increased in SD. In addition, in LD sucrose can indirectly cause flowering by up-regulating FT expression, the FT protein acting as a further leaf-to-apex transported florigen. Thus, there are not only multiple florigens but there can be complex interactions between the signaling pathways controlling production of these various florigens.  相似文献   

17.
Endogenous gibberellins (GAs) were extracted from safflower (Carthamus tinctorius L.) stems and detected by capillary gas chromatography-mass spectrometry from which GA1, GA3, GA19,, GA20, GA29, and probably, GA44 were detected. The detection of these GAs suggests that the early 13-OH biosynthetic pathway is prevalent in safflower shoots. Deuterated GAs were used as internal standards and GA concentrations were determined in stems harvested at weekly intervals. GA1 and GA19 levels per stem increased but concentrations per gram dry weight decreased over time. GA20 was only detected in young stem tissue.Gibberellic acid (GA3) was also applied in field trials and both GA3 and the GA biosynthetic inhibitor, paclobutrazol, were applied in growth chamber tests. GA3 increased epidermal cell size, internode length, and increased internode cell number causing stem elongation. Conversely, paclobutrazol reduced stem height, internode and cell size, cell number and overall shoot weight. In field tests, GA3 increased total stem weight, but decreased leaf weight, flower bud number and seed yield. Thus, GA3 promoted vegetative growth at the expense of reproductive commitment. These studies collectively indicate a promotory role of GAs in the control of shoot growth in safflower, and are generally consistent with gibberellin studies of related crop plants. Author for correspondence  相似文献   

18.
Evidence has been reported that bulb development in onion plants (Allium cepa L.) is controlled by endogenous bulbing and anti-bulbing hormones, and that gibberellin (GA) is a candidate for anti-bulbing hormone (ABH). In this study, we identified a series of C-13-H GAs (GA12, GA15, GA24, GA9, GA4, GA34, and 3-epi-GA4) and a series of C-13-OH GAs (GA44, GA20, GA1 and GA8) from the leaf sheaths including the lower part of leaf blades of onion plants (cv. Senshu-Chuko). These results suggested that two independent GA biosynthetic pathways, the early-non-hydroxylation pathway to GA4 (active GA) and early-13-hydroxylation pathway to GA1 (active GA), exist in onion plants. It was also suggested that GA4 and GA1 have almost the same ability to inhibit bulb development in onion plants induced by treatment with an inhibitor of GA biosynthesis, uniconazole-P. The endogenous levels of GA1 and GA4, and their direct precursors, GA20 and GA9, in leaf blades, leaf sheaths, and roots of 4-week-old bulbing and non-bulbing onion plants were measured by gas chromatography/selected ion monitoring with the corresponding [2H]labeled GAs as internal standards. In most cases, the GA levels in long-day (LD)-grown bulbing onion plants were higher than those of short-day (SD)-grown non-bulbing onion plants, but the GA1 level in leaf blades of SD-grown onion plants was rather higher than that of LD-grown onion plants. Relationship between the endogenous GAs and bulb development in onion plants is discussed.  相似文献   

19.
The effect of day/night temperature regimes on stem elongation and on the content of endogenous gibberellins (GAs) in vegetatively propagated plants of Campanula isophylla cv. Hvit have been studied. Compared with a constant temperature regime at 18°C (18/18°C), stem and internode elongation was enhanced significantly by a combination of high day/low night temperature (21/15°C) and inhibited by an opposite regime (15/21°C). Gibberellins A1, A19, A44, A53, and A97 were identified as endogenous components in Campanula. (GA97 was earlier referred to as 2-OH-GA53.) Quantitative analysis of the endogenous GAs indicates that temperature regimes that stimulate elongation growth are accompanied by an increase in the level of GA1, GA19, and GA44. On the other hand, in plants grown under conditions that reduced stem elongation growth, there was an increased level of GA97.Abbreviations DIF difference between day temperature and night temperature - GA gibberellin - HPLC high performance liquid chromatography - GC-MS gas chromatography-mass chromatography - SPE solid phase extraction - TMS trimethylsilyl - MSTFA N-methyl-N-TMS-trifluoroacetamide - KRI Kovats retention index - SIM selected ion monitoring - D2 deuterated  相似文献   

20.
Recently, it was found that stem elongation and flowering of stock Matthiola incana (L.) R. Br. are promoted by exogenous gibberellins (GAs), including GA4, and also by acylcyclohexanedione inhibitors of GA biosynthesis, such as prohexadione‐calcium (PCa) and trinexapac‐ethyl (TNE). Here, because it was unclear how GA biosynthetic inhibitors could promote stem elongation and flowering, their effect on GA biosynthesis has been examined by quantifying endogenous GA levels; also, the sensitivity of stem elongation and flowering to various GAs in combination with the inhibitors was examined. Stem elongation and flowering were most effectively promoted by GA4 when combined with PCa and, next in order, by 2,2‐dimethyl‐GA4, PCa, GA4+TNE, TNE, GA9+PCa and by GA4. There was little or no promotion by GA1, GA3, GA9, GA13, GA20 and 3‐epi‐2,2‐dimethyl‐GA4. Both the promotive effects of the acylcyclohexanediones on stem elongation and flowering, particularly when applied with GA4, and the fact that TNE caused a build‐up of endogenous GA4 imply that one effect of TNE at the lower dose involved an inhibition of 2β‐hydroxylation of GA4 rather than an inhibition of 20‐oxidation and 3β‐hydroxylation of GAs which were precursors of GA4. Overall, these results indicate that: (1) GAs with 3β‐OH and without 13‐OH groups (e.g. GA4) are the most important for stem elongation and flowering in M. incana; (2) growth promotion rather than inhibition can result if an acylcyclohexanedione acts predominantly to slow 2β‐hydroxylation and so slows inactivation of active gibbberellins, including GA4. It follows that a low dose of an acylcyclohexanedione can be a ‘growth enhancer’ for any applied GA that is liable to inactivation by 2β‐hydroxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号