首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  相似文献   

2.
T-cell hybridoma activated by a variety of stimuli such as anti-cell surface antigen, notably CD3 and T-cell receptors, and Con A undergoes a cell lysis process called activation-induced cell death (AICD). It was found that the major protein kinase C (PKC) isoform in the 2B4.11 T-cell hybridoma, PKC(alpha), was translocated from the cytosolic to the particulate fraction when these hybridoma cells were induced to die by plastic-adsorbed anti-CD3 antibodies. Inhibitors of protein phosphorylation rescued 2B4.11 cells from AICD as determined by the analysis of cellular metabolism and the proportion of living cells. Furthermore, PKC(alpha) down-regulation by phorbol ester treatment abolished AICD, and the degree of PKC down-regulation correlated well with the degree of AICD abolishment, suggesting that PKC activation represents an essential step in the molecular mechanisms underlying AICD in this T-cell hybridoma.  相似文献   

3.
4.
We investigated whether sn-1,2-dioctanoylglycerol (diC8) activates highly purified human T cells. diC8's signaling activity was also compared with that of 12-O-tetradecanoylphorbol-13-acetate (TPA). diC8 and ionomycin were synergistic in promoting T-cell proliferation. The proliferative response was dependent upon an operational interleukin-2 (IL-2) system and exhibited a high degree of specificity; sn-1,2-diC8 was twice as active as racemic-1,2-diC8, and diC8 and TPA were not synergistic. diC8's signaling activity differed from that of TPA. diC8, unlike TPA, failed to elicit IL-2 receptors or proliferation, independently of ionomycin. diC8 also failed to promote the proliferation of T cells signaled with anti-CD3 or -CD2 monoclonal antibodies. Two different inhibitors of PKC, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine or staurosporine, inhibited T-cell proliferation induced with diC8 and ionomycin, but not with TPA and ionomycin. These observations, in addition to demonstrating the differential activity of diC8 and TPA, document a signaling role for diacylglycerol in the activation of normal T cells.  相似文献   

5.
Accessory cell-depleted T cells required the presence of a protein kinase C (PKC) stimulating phorbol ester, such as phorbol 12,13-dibutyrate (PDB), to be activated by soluble antibodies to the CD3 molecular complex. To determine the duration of PDB costimulation necessary to induce a proliferative response, highly purified T cells were pulsed with anti-CD3, incubated with PDB for limited periods of time, and then washed and recultured in the absence of PDB. T cells stimulated with anti-CD3 and PDB for 2 hr were unable to proliferate unless IL-2 or PDB was added to the second culture. With more prolonged exposure to PDB (4-18 hr), anti-CD3-pulsed cells exhibited an increased capacity to proliferate in the absence of additional PDB. Proliferation could be augmented by exogenous IL-2, but remained submaximal. Optimal DNA synthetic responses required the presence of PDB throughout the entire culture. Despite this, costimulation with anti-CD3 and PDB induced a significant number of cells to express IL-2 receptors and enter the cell cycle after 18 hr of costimulation with PDB. Moreover, T cells costimulated by anti-CD3 and PDB produced IL-2 within 4 hr. However, T cells that were stimulated with anti-CD3 and PDB for 4 hr, washed, and recultured rapidly lost the ability to continue to produce IL-2, which reflected a decrease in the content of mRNA encoding IL-2. This loss of IL-2 production was prevented by reculturing the cells with PDB. These studies therefore indicate that after initial T cell activation by anti-CD3, continued stimulation of PKC is necessary for ongoing IL-2 production. These results suggest a model of T cell activation in which sustained stimulation of PKC after cell cycle entry is required to maintain growth factor production and continued proliferation.  相似文献   

6.
To establish an efficient cell-culture system for adoptive immunotherapy, we attempted to use lipopolysacharide (LPS)-activated B cells (LPS blasts) as costimulatory-signal-providing cells in the in vitro induction of antitumor effector cells. Both normal and tumor-draining lymph node cells were efficiently activated by both anti-CD3 monoclonal antibody (mAb) and LPS blasts, and subsequently expanded by a low dose of interleukin-2 (IL-2; anti-CD3 mAb and LPS blasts/IL-2). The expanded cells were predominantly CD8+ T cells and showed a low level of tumor-specific cytotoxic T lymphocyte (CTL) activity. The adoptive transfer of B16-melanoma-draining lymph node cells expanded by anti-CD3 mAb and LPS blasts/IL-2 showed significant antitumor effect against the established metastases of B16 in combination with intraperitoneal injections of IL-2. This treatment cured all B16-bearing mice. In addition, these mice also showed tumorspecific protective immunity against B16 at the rechallenge. Considering that activated B cells express several kinds of costimulatory molecules, these findings thus indicate an efficacy of costimulation that is derived from activated B cells for the in vitro induction of tumor-specific CTL, in co-operation with anti-CD3 mAb. The culture system presented here may thus be therapeutically useful, providing potent effectors for adoptive immunotherapy against various types of cancer.  相似文献   

7.
Protein kinase C (PKC) has been believed to play an important role in the differentiation/proliferation of various kinds of mammalian cells. To analyze its function in living animals, we have established a transgenic mouse line carrying rabbit protein kinase C alpha cDNA under the control of the regulatory element of human CD2. Thymocytes of these transgenic mice overexpressed PKC alpha. Interestingly, the increase of PKC alpha was detected mainly in membrane fractions of transgenic thymocytes. Although the transgenic thymocytes did not show any distinct proliferative features in vivo, they displayed a unique property to extensively proliferate and produce interleukin-2 (IL-2) in response to the stimulation by a soluble form of anti-CD3 monoclonal antibody (mAb), an incomplete agonist for proliferation of normal thymocytes. Furthermore, co-stimulation of the phorbol 12-myristate 13-acetate and anti-CD3 mAb intensely provoked the transgenic thymocytes to release IL-2. For the first time this result provided the direct evidence that PKC alpha translocated to the cell membrane of thymocytes works as an active second messenger of the T cell receptor-CD3 complex-delivered signal for proliferation and IL-2 production.  相似文献   

8.
In this study, we examined the effects of T cell activators on the regulation of protein kinase C (PKC) isozymes present in thymocytes. Using affinity-purified anti-PKC antisera, we determined that the major PKC isoforms in murine thymocytes are PKC beta and PKC epsilon. The CD4+/CD8+ thymocyte subset expressed high levels of both PKC beta and PKC epsilon, whereas the CD4-/CD8- subset expressed much less of both. PKC beta was down-regulated following treatment of thymocytes with phorbol 12-myristate acetate (PMA) (2 x 10(-8) M) or ionomycin (0.4 microM). In contrast, PMA did not induce the down-regulation of PKC epsilon. Ionomycin alone, however, induced PKC epsilon down-regulation, similar to its effect on PKC beta. Similar observations were made on a promonocytic cell line, U937, which expresses PKC alpha, PKC beta (Strulovici, B., Daniel-Issakani, S., Oto, E., Nestor, J., Jr., Chan, H., and Tsou, A.-P. (1989) Biochemistry 28, 3569-3576), and PKC epsilon. To facilitate the study of PKC beta and PKC epsilon, we established a Chinese hamster ovary cell line which expresses murine PKC epsilon in addition to endogenous PKC alpha and PKC beta. Both PKC isoforms (beta and epsilon) were mostly in particulate form. PMA treatment left the majority of immunoreactive PKC epsilon intact. By contrast, thrombin treatment caused the disappearance of particulate and cytosolic PKC epsilon (60% by 10 min and 80% by 1 h). PMA and thrombin promoted the down-regulation of PKC beta with similar kinetics (100% down-regulation by 3 h). These results indicate that: 1) thymocytes express PKC epsilon; and 2) this isozyme exhibits a novel form of regulation distinct from the other PKC isozymes.  相似文献   

9.
10.
CD5 positively costimulates TCR-stimulated mature T cells, whereas this molecule has been suggested to negatively regulate the activation of TCR-triggered thymocytes. We investigated the effect of CD5 costimulation on the differentiation of CD4+CD8+ thymocytes. Coligation of thymocytes with anti-CD3 and anti-CD5 induced enhanced tyrosine phosphorylation of LAT (linker for activation of T cells) and phospholipase C-gamma (PLC-gamma) compared with ligation with anti-CD3 alone. Despite increased phosphorylation of PLC-gamma, this treatment down-regulated Ca2+ influx. In contrast, the phosphorylation of LAT and enhanced association with Grb2 led to activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase. When CD3 and CD5 on CD4+CD8+ thymocytes in culture were coligated, they lost CD8, down-regulated CD4 expression, and induced CD69 expression, yielding a CD4+(dull)CD8-CD69+ population. An ERK inhibitor, PD98059, inhibited the generation of this population. The reduction of generation of CD4+CD8- cells resulted from decreased survival of these differentiating thymocytes. Consistent with this, PD98059 inhibited the anti-CD3/CD5-mediated Bcl-2 induction. These results indicate that CD5 down-regulates a branch of TCR signaling, whereas this molecule functions to support the differentiation of CD4+CD8+ thymocytes by up-regulating another branch of TCR signaling that leads to ERK activation.  相似文献   

11.
In order to address the role of CD4 and CD8 Ag in the process of positive selection in the thymus, antibodies against these molecules, which do not result in the elimination of mature lymph node T cells, were injected in vivo. The results indicate that even long-term injection of nondepleting anti-CD4 and anti-CD8 antibodies does not cause the loss of CD4 or CD8 positive lymph node cells, but it completely blocks the development of the corresponding subpopulation of mature thymocytes. Thus, it appears that the interaction of the CD4 and CD8 accessory molecules on developing thymocytes with a ligand in the thymic environment (probably MHC Ag) is necessary for the positive selection of thymocytes into the appropriate T cell lineage.  相似文献   

12.
T cell activation via Leu-23 (CD69)   总被引:28,自引:0,他引:28  
The CD69 (Leu-23) activation Ag is a phosphorylated 28 to 32-kDa disulfide-linked homodimer that is rapidly induced after lymphocyte activation. CD69 is not present on the surface of peripheral blood resting T cells, but is constitutively expressed by CD3bright thymocytes. Activation of protein kinase C (PKC) by stimulation of the TCR/CD3 or by phorbol esters directly induces CD69 expression on T cells. In the attempt to elucidate the function of CD69 we investigated the ability of the CD69 glycoprotein to transmit an activation signal. Cross-linking of CD69 by mAb induced a prolonged elevation of intracellular [Ca2+], mostly due to an influx of extracellular Ca2+. This signal alone was unable to effectively activate PKC. When PKC was simultaneously activated by PMA, stimulation of CD69 induced IL-2 and IFN-gamma gene expression, enhancement of CD25 expression, and ultimately IL-2-dependent T cell proliferation. Both CD4+ and CD8+ peripheral T cells responded to CD69-mediated activation. Stimulation of CD69 induced proliferation of thymocytes as well as peripheral T cells, but both required independent PKC activation by PMA. Cyclosporin A, which does not prevent PKC-induced CD69 expression, completely suppressed CD69-induced IL-2 and IFN-gamma gene expression. Although the signal delivered by the CD69 initiates T cell proliferation, it is unable to trigger cytotoxicity programs in CD69+-activated T cells or T cell clones.  相似文献   

13.
14.
The signal transduction events which govern major histocompatibility complex-unrestricted tumour cell destruction by nonspecific killer T lymphocytes induced with anti-CD3 antibody have not yet been determined. In this study we used pharmacologic inhibitors to investigate the role of protein tyrosine kinases (PTK) and protein kinase C (PKC) in this process. The PTK-inhibitors herbimycin A, genistein, and methyl 2,5-dihydroxycinnamate blocked anti-CD3-activated killer T (AK-T) lymphocyte-mediated killing of tumour target cells. The PKC-inhibitors staurosporine, calphostin C, and myristoylated PKC pseudosubstrate peptide, as well as PKC desensitization by phorbol 12-myristate 13-acetate pretreatment, also suppressed the cytolytic effector function of AK-T lymphocytes. Lack of tumoricidal activity was not due to reduced AK-T lymphocyte binding to tumour target cells but was associated with the abrogation of granule exocytosis, indicating that PTK and PKC are involved in the postbinding process which results in delivery of the `lethal hit' by AK-T lymphocytes. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

15.
We have previously shown that the major cAMP phosphodiesterase (PDE) isoforms present in murine thymocytes are the cGMP-stimulated PDE activity (PDE-2) and the cAMP-specific PDE activity (PDE-4), and that these isoforms are differentially regulated following ligation of the TCR (Michie, A. M., Lobban, M. D., Mueller, T., Harnett, M. M., and Houslay, M. D. [1996]Cell. Signalling 8, 97–110). We show here that the anti-CD3-stimulated elevation in PDE-4 activity in murine thymocytes is dependent on protein tyrosine kinase and protein kinase C (PKC)-mediated signals as the TCR-coupled increase in PDE-4 activity can be abrogated by both the tyrosine kinase inhibitor, genistein, and the PKC selective inhibitors chelerythrine and staurosporine. Moreover, the PKC-activating phorobol ester, phorbol-12-myristate, 13-acetate (PMA) caused an increase in PDE-4 activity, similar to that observed in cells challenged with anti-CD3 monoclonal antibodies and which was not additive with cochallenge using anti-CD3 antibodies. Both the PMA-and the anti-CD3 antibody-mediated increases in PDE-4 activity were blocked by treatment with either cycloheximide or actinomycin D. Despite the upregulation of PDE-4 activity consequent to TCR ligation, intracellular cAMP levels increased on challenge of thymocytes with anti-CD3 antibody, indicating that adenylate cyclase activity was also increased by TCR ligation. It is suggested that the anti-CD3-mediated increase in PDE-4 activity was owing to a rapid PKC-dependent induction of PDE-4 activity following crosslinking of the TCR complex. This identifies “crosstalk” occurring between the PKA and PKC signaling pathways initiated by ligation of the antigen receptor in murine thymocytes. That both adenylate cyclase and PDE-4 activities were increased may indicate the presence of compartmentalized cAMP responses present in these cells.  相似文献   

16.
Protein kinase C (PKC), which plays a pivotal role in lymphocyte activation, represents a homologous family of at least nine proteins. Seven genes that encode PKC proteins have been identified. Since the regulatory properties and substrate specificities of the isoforms are not identical in vitro, it is possible that each isoform plays a unique role in cell activation. Toward an understanding of the role of PKC isoforms in lymphocyte activation we have studied the expression of mRNA encoding six of the isoforms (alpha, beta, gamma, delta, epsilon, and zeta) in T cell clones and B cell lines. PKC isoform phenotyping was done by MAPPing using isoform-specific primers and slot-blot analyses of mRNA were performed using specific probes. T cell clones and B cell lines were determined to express levels of the delta, epsilon, and zeta isoforms of PKC that were detectable by MAPPing. Plasmacytomas did not express PKC-beta message detectable by MAPPing. Slot blot analyses and Western blot analyses with peptide-specific antibody confirmed that B cell plasmacytomas did not express PKC-beta mRNA or protein. T cell clones and B cell lines were similar in that none expressed PKC-gamma. In cells that expressed PKC isoforms that were detectable by the MAPPing protocol, there was heterogeneity in the relative abundance of isoform mRNA (PKC-delta and -beta) and protein (PKC-beta and -epsilon). Such diversity of isoform expression could be responsible for the differential responsiveness of lymphocyte clones to activating stimuli.  相似文献   

17.
Experimental autoallergic sialadenitis (EAS) in the LEW rat is an induced autoimmune disease of the salivary tissues. EAS is characterized by a lymphocytic infiltration that consists of both CD4+ (helper/inducer T-cell subset) and CD8+ (cytotoxic/suppressor T-cell subset) T cells and results in the immune-mediated destruction of the exocrine salivary glands. To investigate the role that each of the T-cell subsets may have in the pathogenesis of EAS, LEW rats sensitized with WF SMG homogenate were injected with monoclonal antibodies to deplete or inactivate, in vivo, the CD4, CD5 (OX19; pan T lymphocyte), CD8, or RT6 (70% of peripheral T cells) T-cell populations. Treatment with the OX8 (CD8), OX19 (CD5), or W3/25 (CD4) only partially reduced in vivo the respective splenic or lymph node T-cell subsets when analyzed on Day 14, while treatment with DS4.23 (anti-RT6) resulted in greater than 95% depletion of RT6+ spleen and lymph node T cells. EAS incidence and severity was significantly reduced in the W3/25 (CD4) treatment group (11% incidence rate; histologic score 1.0) as compared to medium-injected controls (88% incidence rate; histologic score 2.9). Although the incidence and severity of EAS in the OX19 (71%; histologic score 1.7), OX8 (55%; histologic score 1.7), and RT6 (67%; histologic score 1.6) treatment groups appeared decreased, the reduction was not statistically significant. These results provide evidence that CD4+ T cells have an important role in EAS induction and demonstrate that in vivo treatment with anti-CD4 can ameliorate and/or prevent EAS in the LEW rat.  相似文献   

18.
We have identified a murine T lymphocyte clone that apparently lacks diacylglycerol- and phospholipid-activated protein kinase C (PKC): cell extracts do not display phosphatidylserine, Ca2+, or phorbol ester-dependent phosphotransferase activity; the enzyme was not detected in immunoblots with PKC-specific antibodies; phorbol ester binding sites are not detectable in intact cells; and activators of PKC do not stimulate proliferation or Na+/H+ exchange in intact cells. Only PKC beta mRNA was detected in normal murine T lymphocytes. The mutant T lymphocytes contained amounts of 4.4 kb PKC beta message similar to those in normal murine lymphocytes, but the 2.9 kb and 1.2 kb messages found in normal lymphocytes were barely detectable. No abnormalities were detected on Southern analysis, suggesting that the abnormality may be at the level of message splicing or stability. Since PKC-deficient cells proliferate in response to the T lymphocyte growth factor, interleukin-2, we conclude that activation of PKC is not essential for the growth-promoting action of interleukin-2.  相似文献   

19.
Activation of mitogen-activated protein kinases (MAPK) is a critical signal transduction event for CTL activation, but the signaling mechanisms responsible are not fully characterized. Protein kinase C (PKC) is thought to contribute to MAPK activation following TCR stimulation. We have found that dependence on PKC varies with the method used to stimulate the T cells. Extracellular signal-regulated kinase (ERK) activation in CTL stimulated with soluble cross-linked anti-CD3 is completely inhibited by the PKC inhibitor bisindolylmaleimide (BIM). In contrast, only the later time points in the course of ERK activation are sensitive to BIM when CTL are stimulated with immobilized anti-CD3, a condition that stimulates CTL degranulation. Surprisingly, MAPK activation in response to immobilized anti-CD3 is strongly inhibited at all time points by the diacylglycerol (DAG)-binding domain inhibitor calphostin C implicating the contribution of a DAG-dependent but PKC-independent pathway in the activation of ERK in CTL clones. Chronic exposure to phorbol ester down-regulates the expression of DAG-responsive PKC isoforms; however, this treatment of CTL clones does not inhibit anti-CD3-induced activation of MAPK. Phorbol ester-treated cells have reduced expression of several isoforms of PKC but still express the recently described DAG-binding Ras guanylnucleotide-releasing protein. These results indicate that the late phase of MAPK activation in CTL clones in response to immobilized anti-CD3 stimulation requires PKC while the early phase requires a DAG-dependent, BIM-resistant component.  相似文献   

20.
We previously showed that CD4 binding induced a down-regulation of LFA-1-dependent-antigen-independent adhesion of T and B lymphocytes in a phosphatidylinositol-3-kinase (PI3K)-dependent manner. We now show in A201-CD4 (+) T cell lines, that anti-CD4 Ab increases activation of phosphoinositide-dependent-protein-kinase 1 (PDK1) or PKC zeta, two main effectors down-stream from PI3K. CD4 binding also increases interactions between PI3K and activated PKCzeta and PDK1. Both events are dependent on CD4/p56Lck association, since they are not detected when p56Lck is unable to bind a truncated form of CD4 in transfected T cell lines. We also show using antisense oligonucleotides that both kinases are necessary for down-regulating LFA-1-dependent adhesion induced by CD4 signalling. We also suggest a role of PDK1 in the recruitment of the phosphatase SHP-2 in a multiprotein complex induced by anti-CD4 Ab. This study thus provides further insights into the mechanism underlying the CD4 triggered regulation of LFA-1-mediated adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号