首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recent study demonstrated that gravi-incompetent coleoptile-less seedlings of rye exhibit gravi-competence after exogenous application of ethylene. Treatments and conditions which induce and interfere with this phenomenon were analysed in more detail. Aminocyclopropane-1-carboxylic acid (ACC) as a precursor of ethylene has similar gravicompetence-inducing effects and also appropriate conditions of light, which strongly enhances ethylene synthesis. Both effects can be inhibited by the ethylene-perception blocking agent methylcyclopropene (MCP) or inhibitors of ethylene synthesis such as aminovinylglycine (AVG), indicating that light exerts its gravicompetence-generating effect via induced/enhanced ethylene synthesis. Gain in gravicompetence is accompanied by the induced/enhanced occurrence of calreticulin and lipoxygenase as detected by 2D-gels and Q-TOFF-analyses. Previously gravicompetent, light-grown coleoptile-less seedlings are characterized by gravi-incompetent growth during subsequent horizontal gravistimulation when perception of ethylene is inhibited by MCP. The results demonstrate that continuous perception of ethylene is an indispensable step, permanently required for the regulation of gravitropic growth in germinating primary shoots of rye, either within the process of graviperception and/or of the transduction of the gravi-signal.  相似文献   

2.
Lipids in rye seedlings in relation to vernalization   总被引:2,自引:1,他引:1       下载免费PDF全文
Increasing the chilling time from 1 to 8 weeks decreased the time to heading of winter rye (Secale cereale var. Sangaste) to approximate that of the spring variety (Prolific). On a dry weight basis, the total phospholipid content of the embryos was higher in Sangaste but declined in both varieties during chilling. The proportions of the individual phospholipid components were similar for both varieties and showed similar responses during the 8-week chilling period. Phosphatidylcholine declined and phosphatidic acid increased in both varieties during the treatment.  相似文献   

3.
Summary The nuclear DNA content of rye leaf cells was cytophotometrically determined. At the commencement of differentiation nuclei in rye leaves remain standing at G1 phase. With further differentiation a remarkable diminution of nuclear DNA content occurs in diploid cells. The largest number of cells showing a loss of nuclear DNA content were found in the top of the leaf. The age of the leaf and the extent of diminution in nuclear DNA content are correlated.Dedicated to Professor Dr. J. Straub in honour of his 70th birthday  相似文献   

4.
Coleoptile removal-induced ethylene production was investigated in light-grown winter rye seedlings. Removal of the coleoptile induced 1-aminocyclopropane-l-carboxylic acid (ACC) synthesis and ethylene production by primary leaves and caused an inhibition of elongation growth of the leaves. The activity of ethylene-forming enzyme (EFE) was associated with the increase in ethylene evolution. Both rise in ethylene and ACC production, as well as EFE activity were inhibited by cycloheximide. Wounding the tissue 40 min after the initial treatment resulted in the second increase in ethylene evolution. Derooting of the seedlings without coleoptile removal did not induce ethylene production. It is suggested that the coleoptile represents a barrier for wound-induced ethylene production from actively growing leaf tissue.  相似文献   

5.
Antifreeze protein produced endogenously in winter rye leaves   总被引:30,自引:0,他引:30  
After cold acclimation, winter rye (Secale cereale L.) is able to withstand the formation of extracellular ice at freezing temperatures. We now show, for the first time, that cold-acclimated winter rye plants contain endogenously produced antifreeze protein. The protein was extracted from the apoplast of winter rye leaves, where ice forms during freezing. After partial purification, the protein was identified as antifreeze protein because it modified the normal growth pattern of ice crystals and depressed the freezing temperature of water noncolligatively.  相似文献   

6.
7.
Norflurazon is a selective pyridazinone herbicide excessively employed in the control of many annual grasses and broad-leaved weeds. This chemical causes plant bleaching due to the inhibition of the carotenoid pigment biogenesis as well as induces irreparable changes to chloroplasts, which are considered the organelles where the biosynthesis of resorcinolic lipids takes place. Resorcinolic lipids, a group of phenolic compounds, constitute not only an essential part of the plant antifungal defense system, but also are an important component of the human cereal diet. The aim of this study was to investigate the effect of norflurazon on the biosynthesis of resorcinolic lipids in 5-day-old rye plants (Secale cereale L.) that were grown at three different temperatures under light or dark conditions. At all tested temperatures, norflurazon decreased the fresh biomass of light-grown rye seedlings and increased the weight of plants grown in darkness. Compared with respective controls, this herbicide caused an increase in total content of alkylresorcinols in both green and etiolated plants with the exception of dark-grown norflurazon-treated rye at 29 degrees C. The general level of saturated homologues was markedly decreased by norflurazon in all etiolated plants and in light-grown seedlings at 15 degrees C. Independent of thermal and light conditions, in all norflurazon-treated samples two alkylresorcinol derivatives predominated: 1,3-dihydroxy-5-n-heptadecylbenzene and 1,3-dihydroxy-5-n-nonadecylbenzene. Thus, our results suggest that norflurazon affected the metabolism of alkylresorcinols in rye seedlings and its action was dependent on external stimuli.  相似文献   

8.
9.
Antifreeze proteins in winter rye leaves form oligomeric complexes   总被引:2,自引:3,他引:2       下载免费PDF全文
Yu XM  Griffith M 《Plant physiology》1999,119(4):1361-1370
Antifreeze proteins (AFPs) similar to three pathogenesis-related proteins, a glucanase-like protein (GLP), a chitinase-like protein (CLP), and a thaumatin-like protein (TLP), accumulate during cold acclimation in winter rye (Secale cereale) leaves, where they are thought to modify the growth of intercellular ice during freezing. The objective of this study was to characterize the rye AFPs in their native forms, and our results show that these proteins form oligomeric complexes in vivo. Nine proteins were separated by native-polyacrylamide gel electrophoresis from apoplastic extracts of cold-acclimated winter rye leaves. Seven of these proteins exhibited multiple polypeptides when denatured and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After isolation of the individual proteins, six were shown by immunoblotting to contain various combinations of GLP, CLP, and TLP in addition to other unidentified proteins. Antisera produced against individual cold-induced winter rye GLP, CLP, and TLP all dramatically inhibited glucanase activity in apoplastic extracts from cold-acclimated winter rye leaves, and each antiserum precipitated all three proteins. These results indicate that each of the polypeptides may be exposed on the surface of the protein complexes. By forming oligomeric complexes, AFPs may form larger surfaces to interact with ice, or they may simply increase the mass of the protein bound to ice. In either case, the complexes of AFPs may inhibit ice growth and recrystallization more effectively than the individual polypeptides.  相似文献   

10.
Purification and properties of chlorophyllase from greened rye seedlings   总被引:5,自引:0,他引:5  
1. Chlorophyllase [EC 3.1.1.14] was extracted from the acetone-dried powder of the chloroplasts of greened rye seedlings with 1% cholate, and purified 870-fold with a yield of about 30%. The purification procedure was composed of fractionations with acetone and ammonium sulfate, and hydrophobic chromatography on a phenyl-Sepharose CL-4B column. 2. The purified enzyme was pure as analyzed by molecular-sieve chromatography and isoelectric electrophoresis. It had an isoelectric point of 4.5 and a molecular weight of 39,000. 3. The purified enzyme was stable at pH 6-9 and 4 degrees C. At pH 7.5, it was stable in the presence and absence of 30% acetone. However, at 30 degrees C, it was not stable above a 10% concentration of acetone. 4. The purified enzyme hydrolyzed chlorophylls a and b from spinach into chlorophyllides a and b and phytols, respectively; and bacteriochlorophyll a from Rhodospirillum rubrum into bacteriochlorophyllide a and a derivative of phytol, possibly all-trans-geranylgeraniol. The hydrolysis rates were stimulated to their maxima in the presence of 30% acetone; maximum stimulation was about 50% with bacteriochlorophyll a and about 400% with chlorophyll a. 5. At pH 7.5 and 30 degrees C in the presence of 30% acetone, the Km values and specific activities were 12 microM and 480 nmol . min-1 . mg-1 for chlorophylls a, and 4 microM and 170 nmol . min-1 . mg-1 for R. rubrum bacteriochlorophyll a, respectively.  相似文献   

11.
The occurrence of alkylresorcinols, polyketide compounds that in the same homologous series as cardol isolated from Anacardium occidentale (cashew) or bilobol from Ginkgo biloba which are derivatives of 1,3-dihydroxy-5-alk(en)ylbenzene, have been demonstrated in developing rye (Secale cereale L.) kernels. The 3-day-old seedlings grown in sterile conditions already contain detectable amounts of phenolic compounds that were identified as alkylresorcinols. This fraction is the mixture of saturated and enoic homologs of various lengths of the aliphatic side chain. The composition of homologs is similar to that determined in mature grains. The relatively high level of alkylresorcinols in mitochondria and plastids (enhanced approximately twice in the absence of light) suggests that their synthetic pathway and/or biological function may be related to these cellular compartments. Resorcinolic lipids, when present in the external medium, are taken up by seedlings in the energy-dependent manner.  相似文献   

12.
Ethylene and the growth of rice seedlings   总被引:6,自引:2,他引:6       下载免费PDF全文
Etiolated whole rice seedlings enclosed in sealed vials produced ethylene at a rate of 0.9 picomole per hour per seedling. When 2-centimeter-long shoots were subdivided into 5-millimeter-long sections, the sections containing the tip of the shoot evolved 37% of the total ethylene with the remaining 63% being produced along a gradient decreasing to the base of the shoot. The tip of the coleoptile also had the highest level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and of the ethylene-forming enzyme activity. Ethylene is one of the factors controlling coleoptile elongation. Decapitation of the seedling reduced ethylene evolution to one-third its original level and inhibited coleoptile growth. In short-term experiments, the growth rate of decapitated seedlings was restored to almost that of intact seedlings by application of ethylene at a concentration of 10 microliters per liter. Apart from ethylene, O2 also participates in the control of coleoptile growth. When rice seedlings were grown in a gas mixture of N2 and O2, the length of the coleoptiles reached a maximum at a concentration of 2.5% O2. Lower and higher concentrations of O2 reduced coleoptile growth. The effect of exogenous ethylene on coleoptile growth was also O2 dependent.  相似文献   

13.
The subcellular compartmentation of β -glucosidase was studied in rye, maize and wheat seedlings by immunocytochemical methods. For detection, we used a 10 nm gold-labeled secondary antibody, and results were observed using transmission electron microscopy. In all three species, β -glucosidase was found in plastids, cytoplasm and cell walls. In rye, gold particles were seen on cell walls and cytoplasm in epidermal cells of the root tip and shoot, in bundle sheath cells of the shoot and in all cells, except the vascular bundle cells of the coleoptile. Gold labeling was also observed in plastids of the bundle sheath cells of rye shoot tips and in cortical cells of root tips. In wheat, gold labeling was observed on cell walls and cytoplasm of epidermal cells in the shoot base and coleoptile, and on cell walls and plastids in epidermal cells of the root tip. In maize, gold labeling was mainly found in plastids or proplastids in vascular bundle cells and bundle sheath cells of the shoot, in bundle sheath cells of the coleoptile and in epidermal cells of the root. Some gold particles were also found in cell walls and cytoplasm of stomatal guard cells of the shoot base and vascular bundle cells of the shoot tip and in the cell walls of bundle sheath cells of the shoot tip and root tip epidermal cells. Results are discussed in relation to the role of β -glucosidase in hydroxamic acid release and overall defense mechanism of monocotyledons.  相似文献   

14.
R. D. Brock  A. J. Pryor 《Chromosoma》1996,104(8):575-584
An unstable minichromosome comprising part of the short arm of chromosome 10 of maize was recovered from an oil yellow variegated plant as a consequence of gamma irradiation of pollen. The cytological and gene dosage observations are consistent with the minichromosome being a partial isochromosome, which lags at mitotic and meiotic anaphase. Loss of the minichromosome, which carries two doses of the +gene, causes phenotypic variegation in otherwise yellow lethal (Oy/Oy or Oy/oy) and olive (Oy/+ or oy/oy) genotypes. The minichromosome was transmitted to 8.1% of progeny via the pollen and 0.5% via the egg. Variations in the number and size of the minichromosome were recovered in progeny from a large test cross designed to test the feasibility for the detection of genetic variants including apomicts. No apomicts were recovered. All progeny with the appropriate maternal olive phenotype and the paternally derived coloured aleurone proved to be haploids. The recovery of a large minichromosome provides evidence for rare pairing and exchange with the short arm of chromosome 10. The variants of chromosome 10S generated from this programme provide useful material for further cytological, genetic and molecular analysis.  相似文献   

15.
The effect of cadmium on growth parameters of seedlings of maize, rye and wheat as well as the role of phytochelatins in Cd detoxication in these species were studied. Cadmium was found to inhibit root growth and decrease fresh weight and water content in roots and shoots of the studied plants. Although a considerably lower Cd accumulation was shown in maize seedlings than in other species, they were characterized by the highest sensitivity to cadmium. Among γ-Glu-Cys peptides synthetized by plant species, phytochelatins — glutathione derivatives predominated. In maize they were synthetized in amounts sufficient for binding the total pool of the metal taken up, and the detoxication mechanism was localized in their roots. Larger amounts of cadmium were accumulated in roots of wheat and rye, but the quantity of the formed γ-Glu-Cys peptides seems insufficient for detoxication of the metal.  相似文献   

16.
Heavy metals, like Cd, decrease intracellular levels of essential mineral nutrient elements. Here we show the effects of the interaction between Cd and inorganic phosphate and its effects on some aspects of the photosynthetic competence of first rye leaves. The decrease in the level of small and large Rubisco subunits in the leaves of Cd-treated seedlings is discussed both in terms of the recovering effect of an additional Pi supply to the leaves, as well as of direct and indirect mechanisms of Cd-toxicity towards photosynthesis.  相似文献   

17.
Cytoplasmic polysomes have been prepared from mature leaves of winter rye (Secale cereale L. cv Puma). This is the first time a method has been developed for isolation of highly polymerized polysomes from mature leaves. The degree of intactness of isolated plant polysomes has been determined by two independent but complementary methods: size class distribution by sucrose gradient centrifugation and in vitro translation. The polymerization of isolated polysomes was estimated by the ratio of the proportion of large polysomes to the proportion of small polysomes obtained from the profiles. Our results show that the composition of the optimal polysome isolation buffer for mature rye leaves is different from that reported for young tobacco and pea leaves. Polysomes were translated in vitro with the S-105 wheat germ fraction. The degree of polysome polymerization has a significant effect on their in vitro translation since both the incorporation of amino acid and the presence of high molecular weight polypeptides are proportional to the large polysomes/small polysomes ratio. This study emphasizes the need to evaluate isolation conditions carefully before proceeding with polysome studies in any particular tissue or in tissues under different physiological status.  相似文献   

18.
Ethylene inhibition of auxin transport by gravity in leaves   总被引:11,自引:9,他引:2       下载免费PDF全文
Lyon CJ 《Plant physiology》1970,45(5):644-646
  相似文献   

19.
Order parameters of chloroplast membrane lipids of rye wheat seedlings differing in cold hardiness were compared before after hardening. Seedlings grown at 25° exhibited similar membrane microviscosities. When hardened, the cultivars most resistant to freezing temperatures possessed the most fluid membranes, while those sensitive to cold were unable to alter them. Changes in linolenic acid levels alone cannot be responsible for the observed phenomena.  相似文献   

20.
J. Feierabend 《Planta》1977,135(1):83-88
The leaves of young rye plants (Secale cereale L.) grown at 32° were deficient in chlorophyll and in chloroplastic rRNA as compared to those grown at 22°, which developed normally. Both chlorophyll accumulation and the formation of plastidic rRNA were largely restored at 32° when the plants were transfered several times for 1 h per day to 22°. In the chlorotic 32°-grown rye leaves the in vivo activity of -aminolevulinate synthetase was very low. Aminolevulinate dehydratase however, exhibited high activity in extracts from 32°-grown leaves and was localized in the plastid fraction isolated from the chlorotic leaf tissue. After application of -aminolevulinic acid to chlorotic parts of leaves growing at 32°, protochlorophyll(ide) was formed and accumulated in the dark. In the light, the protochlorophyll(ide) was photooxidized at 32°. The results suggest a cytoplasmic site of synthesis for the series of enzymes converting -aminolevulinate to protochlorophyll(ide). It is concluded that an inhibition of -aminolevulinate synthetase and the photooxidation of protochlorophyll(ide) or chlorophyll are responsible for the chlorosis of the leaves at 32°.Abbreviations ALA -aminolevulinic acid - ALAD -aminolevulinate dehydratase - ALAS -aminolevulinate synthetase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号