首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Leader peptidase, an integral transmembrane protein of Escherichia coli, requires two apolar topogenic elements for its membrane assembly: a 'hydrophobic helper' and an internal signal. The highly basic cytoplasmic region between these domains is a translocation poison sequence, which we have shown blocks the function of a preceding signal sequence. We have used oligonucleotide-directed mutagenesis to remove positively charged residues within this polar domain to determine if it is the basic character in this region that has the negative effect on translocation. Our results show that mutations that remove two or more of the positively charged residues within the polar region no longer block membrane assembly of leader peptidase. In addition, when the translocation poison domain (residues 30-52) is replaced with six lysine residues, the preceding apolar domain cannot function as an export signal, whereas it can with six glutamic acids. Thus, positively charged residues within membrane proteins may have a major role in determining the function of hydrophobic domains in membrane assembly.  相似文献   

3.
Gite S  Li Y  Ramesh V  RajBhandary UL 《Biochemistry》2000,39(9):2218-2226
The formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria. We are studying the molecular mechanisms of recognition of the initiator tRNA by Escherichia coli MTF. MTF from eubacteria contains an approximately 100-amino acid C-terminal extension that is not found in the E. coli glycinamide ribonucleotide formyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor. This C-terminal extension, which forms a distinct structural domain, is attached to the N-terminal domain through a linker region. Here, we describe the effect of (i) substitution mutations on some nineteen basic, aromatic and other conserved amino acids in the linker region and in the C-terminal domain of MTF and (ii) deletion mutations from the C-terminus on enzyme activity. We show that the positive charge on two of the lysine residues in the linker region leading to the C-terminal domain are important for enzyme activity. Mutation of some of the basic amino acids in the C-terminal domain to alanine has mostly small effects on the kinetic parameters, whereas mutation to glutamic acid has large effects. However, the deletion of 18, 20, or 80 amino acids from the C-terminus has very large effects on enzyme activity. Overall, our results support the notion that the basic amino acid residues in the C-terminal domain provide a positively charged channel that is used for the nonspecific binding of tRNA, whereas some of the amino acids in the linker region play an important role in activity of MTF.  相似文献   

4.
Arginine residues in the transit peptides of mitochondrial precursors are proposed to be important for uptake into mitochondria. To study this further, we have used cassette mutagenesis to create site-specific amino acid replacements within the transit peptide of rat mitochondrial malate dehydrogenase. Plasmids containing mutant sequences were expressed in vitro and tested in a mitochondrial uptake system utilizing isolated rat liver mitochondria. Substitution for arginine at position 14 with asparagine, glutamine, or alanine decreased the relative import level by 20-30% compared to the wild-type sequence when assayed in 1-h uptake experiments. Although lysine substitution did not alter import, substitution with glutamic acid decreased import by 40%. Alanine substitution for arginines at both positions 14 and 15 also dramatically decreased import. Uptake was partially restored in this mutant when positive charge was inserted at a new location within the transit peptide. Time course experiments showed that the initial rates of import were decreased in these mutants, as were the relative amounts of incorporated protein. These results were best explained by the loss of positive charge following amino acid substitutions for the arginine residues and suggest that the role of the charge is to enhance the efficiency of membrane translocation.  相似文献   

5.
The definition of a typical sec-dependent bacterial signal peptide contains a positive charge at the N-terminus, thought to be required for membrane association. In this study the amino acid distribution of all Escherichia coli secretory proteins were analysed. This revealed that there was a statistically significant bias for lysine at the second codon position (P2), consistent with a role for the positive charge in secretion. Removal of the positively charged residue P2 in two different model systems revealed that a positive charge is not required for protein export. A well-characterized feature of large amino acids like lysine at P2 is inhibition of N-terminal methionine removal by methionyl amino-peptidase (MAP). Substitution of lysine at P2 for other large or small amino acids did not affect protein export. Analysis of codon usage revealed that there was a bias for the AAA lysine codon at P2, suggesting that a non-coding function for the AAA codon may be responsible for the strong bias for lysine at P2 of secretory signal sequences. We conclude that the selection for high translation initiation efficiency maybe the selective pressure that has led to codon and consequent amino acid usage at P2 of secretory proteins.  相似文献   

6.
An essential property of human extracellular superoxide dismutase (hEC-SOD) is its affinity for heparin and heparan sulfate proteoglycans located on cell surfaces and in the connective tissue matrix. The C-terminal domain of hEC-SOD plays the major role in this interaction. This domain has an unusually high content of charged amino acids: six arginine, three lysine, and five glutamic acid residues. In this study, we used alanine scanning mutagenesis of charged amino acids in the C-terminal domain to elucidate the requirements for the heparin/heparan sulfate interaction. As a tool in this study, we used a fusion protein comprising the C-terminal domain of hEC-SOD fused to human carbonic anhydrase II (HCAII). The interaction studies were performed using the surface plasmon resonance technique and heparin-Sepharose chromatography. Replacement of the glutamic acid residues by alanine resulted, in all cases, in tighter binding. All alanine substitutions of basic amino acid residues, except one (R205A), reduced heparin affinity. The arginine and lysine residues in the cluster of basic amino acid residues (residues 210-215), the RK-cluster, are of critical importance for the binding to heparin, and arginine residues promote stronger interactions than lysine residues.  相似文献   

7.
Methylation of lysine 20 in histone H4 has been proven to play important roles in chromatin structure and gene regulation. SET8 is one of the methyltransferases identified to be specific for this modification. In this study, the minimal active SET domain of SET8 has been mapped to the region of amino acids 195-352. This region completely retains the same methylation activity and substrate specificity as the full-length SET8. The SET domain recognizes a stretch of specific amino acid sequence around lysine 20 of H4 for its methylation activity. Methylation assays with N terminus mutants of H4 that contain deletions and single alanine or glutamine substitutions of charged residues revealed that SET8 requires the sequence RHRK20VLRDN for methylation at lysine 20. The individual mutation of any charged residue in this sequence to alanine or glutamine abolished or greatly decreased levels of methylation of lysine 20 of H4 by SET8. Interestingly, mutation of lysine 16 to alanine, arginine, glutamine, or methionine did not affect methylation of lysine 20 by the SET domain. Mass spectrometric analysis of synthesized H4 N-terminal peptides modified by SET8 showed that SET8 selectively mono-methylates lysine 20 of H4. Taken together, our results suggested that the coordination between the amino acid sequence RHRK20VLRDN and the SET domain of SET8 determines the substrate specificity and multiplicity of methylation of lysine 20 of H4.  相似文献   

8.
By using an in vitro system for the translocation of secretory proteins in Escherichia coli, detailed and quantitative studies were performed as to the function of the positively charged amino acid residues at the amino terminus of the signal peptide. Uncleavable OmpF-Lpp, a model secretory protein carrying an uncleavable signal peptide, and mutant proteins derived from it were used as translocation substrates. When the positive charge, +2 (LysArg) for the wild-type, was changed to 0, -1, or -2, little or no translocation was observed. The number of the positive charge was altered by introducing different numbers of Lys or Arg residues into the amino terminus. The rate of translocation was roughly proportional to this number, irrespective of whether the charged amino acid residues were Lys or Arg. When the amino-terminal LysArg was replaced by His residues, translocation took place more efficiently at pH 6.5 than pH 8.0, whereas that of the wild-type was about the same as the two pH values. We conclude that the signal peptide requires a positive charge at its amino-terminal region to function in the translocation reaction and that the rate of translocation is roughly proportional to the number of the positively charged group, irrespective of the amino acid species that donates the charge. Evidence suggesting that the positive charge is involved in the binding of precursor proteins to the membrane surface to initiate translocation is also presented.  相似文献   

9.
Hybrid genes were constructed to express bifunctional hybrid proteins in which staphyloccal nuclease A with or without an amino-terminai OmpA signal sequence was fused with TEM β-lactamase (at the carboxyl terminal side) using the signal peptide of the major outer membrane lipoprotein of Escherichia coli as an internal linker. The hybrid proteins were found to be inserted in the membrane. Orientation of the hybrid protein with the OmpA signal peptide showed that the nuclease was translocated into the periplasm and the β-lactamase remained in the cytoplasm. This indicates that the cleavable OmpA signal peptide served as a secretory signal for nuclease and the internal lipoprotein signal served as the transmembrane anchor, in the absence of the OmpA signal sequence the topology of the hybrid protein was reversed indicating that the internal lipoprotein signal peptide initially served as the signal peptide for the secretion of the carboxy terminal β-lactamase domain across the membrane and subsequently as a membrane anchoring signal. The role of charged amino acids in the translocation and transmembrane orientation of membrane proteins was also analysed by introducing charged amino acids to either or both sides of the internal lipoprotein signal sequence in the bifunctional hybrid proteins in the absence of the amino-terminal signal sequence. Introduction of two lysine residues at the carboxy-terminal side of the internal signal sequence reversed the topology of the transmembrane protein by translocating the aminoterminal nuclease domain across the membrane, leaving the carboxyl terminal β-actamase domain in the cytoplasm. When three more lysine residues were added to the amino-terminal side of the internal signal sequence of the same construct the membrane topology flipped back to the original orientation. A similar reversion of the topology could be obtained by introducing negatively charged residues at the amino-terminal side of the internal signal sequence. Present results demonstrate for the first time that a bifunctional transmembrane protein can be engineered to assume either of the two opposite orientations and that charge balance around the transmembrane domain is a major factor in controlling the topology of a transmembrane protein.  相似文献   

10.
A variety of model presecretory proteins, proOmpF-Lpps, possessing different numbers of lysine residues (0, 2, and 4) as positively charged amino acid residues and different numbers of leucine residues (7, 8, and 9) as hydrophobic amino acid residues in their signal peptides were constructed. The effect of positive charges on the in vitro translocation efficiency markedly differed with the number of leucine residues. Positive charges were strongly required for translocation when the hydrophobic region comprised 7 or 8 leucine residues, whereas the translocation of proOmpF-Lpps possessing 9 leucine residues took place efficiently even in the absence of positive charges and the introduction of positive charges did not significantly enhance the translocation efficiency. The translocation of all the proOmpF-Lpps, including one possessing no positive charge, was ATP-, protonmotive force-, and SecA-dependent and accompanied by signal peptide cleavage, indicating that they are translocated via the usual secretory pathway. It is likely that the requirement of positive charges can be compensated for by a longer hydrophobic stretch in the functioning of the signal peptide.  相似文献   

11.
Leader or signal sequences are specialized domains within precursor proteins which serve an essential role in interacting with the cellular secretory apparatus to enable intracellular transport and secretion of proteins. Despite many differences in primary amino acid sequences, signal domains interact with a common set of intracellular components, presumably because the signal sequences share an overall conformational similarity. In a few instances, mutant signal peptides from prokaryotes have been studied and their structures correlated with function (export) in vivo. A series of analogs of the precursor-specific region of preproparathyroid hormone have been prepared which contain substitutions of either proline or a charged amino acid within the hydrophobic core. These synthetic "mutants" have previously been evaluated in several in vitro assays to determine their functionality with regard to protein secretion and suitability as substrates for signal peptidase. The secondary structural content of each peptide, as well as the native sequence and sulfur-free analog, was determined in aqueous and nonaqueous conditions by circular dichroism (CD) as a function of time. The structures obtained were correlated with in vitro bioactivities. Unlike the findings or previous CD studies, all the peptides examined here had low to undetectable alpha-helical content in both aqueous and nonaqueous buffers. The unsubstituted and sulfur-free analogs had high (80-85%) beta-structure in aqueous conditions which was reduced to approximately 30% in nonaqueous solvent. The proline- and charged-substituted peptides contained about half the beta-structure content (35-55%) in aqueous buffer; in nonaqueous solvent their structure was similar to the unsubstituted peptides. The structure-activity correlates found were as follows: a high degree of structure (aqueous conditions) correlated with interaction with signal recognition particle and substrate suitability for signal peptidase; a low degree of structure (nonaqueous environment) correlated with activity in the translocation assay.  相似文献   

12.
SecA is an acidic, peripheral membrane protein involved in the translocation of secretory proteins across the cytoplasmic membrane. The direct interaction of SecA with secretory proteins was demonstrated by means of chemical cross-linking with 1-ethyl-3-(3-dimethylaminoprophyl)carbodiimide. OmpF-Lpp, a model secretory protein, carries either an uncleavable or cleavable signal peptide, and mutant secretory proteins derived from uncleavable OmpF-Lpp were used as translocation substrates. The interaction was SecA-specific. None of the control proteins, which are as acidic as SecA, was cross-linked with uncleavable OmpF-Lpp. The interaction was signal peptide-dependent. The interaction was increasingly enhanced as the number of positively charged amino acid residues at the amino-terminal region of the signal peptide was increased, irrespective of the species of amino acid residues donating the charge. Finally, parallelism was observed between the efficiency of interaction and that of translocation among mutant secretory proteins. It is suggested that precursors of secretory proteins interact with SecA to initiate the translocation reaction.  相似文献   

13.
Amino acid sequence specificities of an adhesive recognition signal   总被引:11,自引:0,他引:11  
Synthetic peptides derived from the cell-binding domain of fibronectin have previously been found to inhibit fibronectin-mediated adhesion in vitro competitively and reversibly, as well as inhibiting cell migratory events in vivo. The amino acid sequence specificity required for this inhibitory activity has been examined further using variations of the originally identified active peptide sequences. The most active small peptide was found to be the pentapeptide Gly-Arg-Gly-Asp-Ser. Although the tetrapeptide Arg-Gly-Asp-Ser was found to retain substantial activity, it was approximately threefold less active. An "inverted" peptide sequence with these same four amino acids arranged in the mirror symmetrical sequence Ser-Asp-Gly-Arg was found to be nearly as active as the forward sequence. However, the same inverted tetrapeptide sequence embedded in a synthetic decapeptide derived from a sequence of histocompatibility antigens has minimal activity, suggesting the importance of adjacent sequences in modifying the activity of such peptides. Neither substitution of amino acids of the same charge nor reversal of the positions of the two charged amino acids retains biological activity. Decreasing the spacing between the charged residues also causes a loss of activity. Our results suggest the hypothesis that this adhesive recognition signal consists of a specific arrangement of one acidic and one basic charged group and additional information provided by adjacent amino acids.  相似文献   

14.
The export signal has been assumed to be localized not only in the signal peptide of a secreted protein precursor, but also in the N-terminal region of the mature polypeptide chain. Mutant alkaline phosphatases with amino acid substitutions of two positively charged residues (Lys or Arg) in this region at different distances from the signal peptide have been studied to test this assumption. The efficiency of secretion has been shown to decrease in mutant proteins with amino acid substitutions in the region of 16-18 amino acid residues; the closer to the signal peptide is the substitution, the greater is the decrease. A change in the primary structure of the N-terminal domain results also in an increase in the Michaelis constant, which is greater the farther is the amino acid substitution from the signal peptide, suggesting a change in the enzyme function as well.  相似文献   

15.
The minimal sequence requirement for a peroxisome-targeting signal was investigated using an in vitro import system. Carboxyl-terminal sequences Ser-Lys-Leu (SKL) and Leu-Gln-Ser-Lys-Leu (LQSKL) of acyl-CoA oxidase (AOX) directed to peroxisomes the fused proteins with import-incompetent forms of AOX and catalase that had been truncated, implying that the SKL tripeptide functions as a targeting signal. Elimination of the entire SKL sequence or deletion of any 1 or 2 amino acids in the sequence abolished the import activity of AOX. Substitution of alanine for serine did not affect the import activity. Topogenic activity was retained when lysine was mutated to either arginine or histidine, whereas mutation to glutamic acid completely abolished the activity. A synthetic peptide comprising the carboxyl-terminal 10 amino acid residues of AOX inhibited the import of the authentic AOX polypeptide, whereas other peptides in which SKL was mutated, deleted, or internally located were not effective. The uptake of AOX was little affected by the peptide with an amidated alpha-carboxyl group. These results strongly suggest that the carboxyl-terminal SKL motif sequence (Ser/Ala)-(Lys/Arg/His)-Leu functions as a topogenic signal in translocation of proteins into peroxisomes, requiring the whole tripeptide sequence with a free alpha-COOH group at the carboxyl terminus.  相似文献   

16.
By sequence alignment of the extracellular Serratia marcescens nuclease with three related nucleases we have identified seven charged amino acid residues which are conserved in all four sequences. Six of these residues together with four other partially conserved His or Asp residues were changed to alanine by site-directed PCR-mediated mutagenesis using a variant of the nuclease gene in which the coding sequence of the signal peptide was replaced by the coding sequence for an N-terminal affinity tag [Met(His)6GlySer]. Four of the mutant proteins showed almost no reduction in nuclease activity but five displayed a 10- to 1000-fold reduction in activity and one (His110Ala) was inactive. Based upon these results it is suggested that the S.marcescens nuclease employs a mechanism in which His110 acts in concert with a Mg2+ ion and three carboxylates (Asp107, Glu148 and Glu232) as well as one or two basic amino acid residues (Arg108, Arg152).  相似文献   

17.
A peptide from human parotid secretion which inhibited hemagglutination of Bacteroides gingivalis 381 was purified by ultrafiltration followed by DEAE-Sephadex A-25 column chromatography and by gel filtration on Sephadex G-25, and then by reversed-phase HPLC. The complete amino acid sequence of the peptide, determined by automated Edman degradation was as follows; Lys-Phe-His-Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr. The peptide contained 12 residues and the charged amino acids predominated with 4 histidine, 2 lysine, 1 arginine and 1 glutamic acid residues, thus being a histidine-rich peptide. The peptide was an active inhibitor of the hemagglutinating activity of B. gingivalis. Specific binding of tritium-labeled peptide to B. gingivalis cells was demonstrated. These results suggest that the histidine-rich peptide may function as a binding domain for the hemagglutinins of B. gingivalis during agglutination.  相似文献   

18.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

19.
A cDNA containing the complete amino acid-coding region of wound-induced tomato Inhibitor II was constructed in the plasmid pUC9. The open reading frame codes for 148 amino acids including a 25-amino acid signal sequence preceding the N-terminal lysine of the mature Inhibitor II. The Inhibitor II sequence exhibits two domains, one domain having a trypsin inhibitory site and the other a chymotrypsin inhibitory site, apparently evolved from a smaller gene by a process of gene duplication and elongation. The amino acid sequence of tomato leaf Inhibitor II exhibits homology with two small proteinase inhibitors isolated from potato tuber and an inhibitor from eggplant. The small potato tuber inhibitors are homologous with 33 amino acids of the N-terminal domain and 19 amino acids from the C-terminal domain. Two identical nucleotide sequences of Inhibitor II cDNA in the 3' noncoding region were present that were also found in an Inhibitor I cDNA. These include an atypical polyadenylation signal, AATAAG, and a 10-base palindromic sequence, CATTATAATG, for which no function is yet known.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号