首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of brain-specific proteins has been examined in perikaryal and axonal regions of the giant fibre system of the squid. After in vitro incubation of stellate ganglia, stellate nerves and isolated giant axons with radioactive amino acids, the labelled soluble proteins have been extracted from the giant fibre lobe, the axoplasm and the axonal sheath of the giant axon and have been separated by gel electrophoresis on a continuous system. In addition, they have been challenged with antisera prepared against the cephalopod brain-specific proteins L1 and L2 and the resulting precipitate has been resolved by sodium dodecyl sulphate-gel electrophoresis. Synthesis of these two proteins appears to be restricted to the giant fibre lobe, while an additional discrete protein band (L5) also becomes clearly labelled in the isolated giant axon. Radioactive components migrating in the region of the L1 and L2 proteins are synthesized in the isolated giant axon. They can be distinguished from tbese proteins on the basis of electrophoretic and immunochemical criteria.  相似文献   

2.
Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

3.
The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular weight (greater than 300 kDa) and 220-kDa neurofilament proteins are the major endogenous substrates for the kinases in the axoplasm and the neurofilament preparation, whereas 95- and less than 60-kDa proteins are the major phosphoproteins in the ganglion cell preparation. The squid axon neurofilament (SANF) protein kinase activity appeared to be both cAMP and Ca2+ independent and could phosphorylate both casein (Km = 40 microM) and histone (Km = 180 microM). The SANF protein kinase could utilize either ATP or GTP in the phosphotransferase reaction, with a Km for ATP of 58 microM and 129.4 microM for GTP when casein was used as the exogenous substrate; and 25 and 98.1 microM for ATP and GTP, respectively, when the endogenous neurofilament proteins were used as substrates. The SANF protein kinase activity was only slightly inhibited by 2,3-diphosphoglycerate and various polyamines at high concentrations and was poorly inhibited by heparin (34% inhibition at 100 micrograms/ml). The failures of heparin to significantly inhibit and the polyamines to stimulate the SANF protein kinase indicate that it is not a casein type II kinase. The relative efficacy of GTP as a phosphate donor indicates that SANF protein kinase differs from known casein type I kinases. Phosphorylated (32P-labeled) neurofilament proteins were only slightly dephosphorylated in the presence of axoplasm or stellate ganglion cell supernatants, and the neurofilament-enriched preparation did not dephosphorylate 32P-labeled neurofilament proteins. The axoplasm and neurofilament preparations had no detectable protein kinase inhibitor activity, but a strong inhibitor activity, which was not dialyzable but was heat inactivatable, was found in ganglion cells. This inhibitor activity may account for the low phosphorylation activity found in the stellate ganglion cells and may indicate inhibitory regulation of SANF protein kinase activity in the ganglion cell bodies.  相似文献   

4.
Abstract: Acid protease activity was measured in homogenized stellate ganglion, axoplasm extruded from the squid giant axon, homogenized fin nerves, and in lysed synaptosomes prepared from the optic lobe of the squid. At least two different acid protease classes were distinguished on the bases of their inhibitor profiles. Acid protease activity was present in each of the above tissues except extruded axoplasm. This result suggests that the acid protease activity found in our homogenized finnerves might be located not within the axons but rather in glial cells or extracellular tissue. The absence of acid protease activity in extruded axoplasm indicates that acid proteases are unlikely to play a significant role in the catabolism of intracellular proteins along the length of the axon.  相似文献   

5.
INCORPORATION OF LABELLED PHOSPHATE INTO PHOSPHOLIPIDS IN SQUID GIANT AXONS   总被引:2,自引:2,他引:0  
Inorganic phosphate labelled with 32P was applied to giant axons excised from squid (Loligo pealeii) by addition of 32Pi to the bathing solution, by injection into the axon, or by addition to axoplasm which had been separated from the sheath. The preparations were kept at 10 to 25° for various times up to 4 hr. When 32Pi was supplied by way of the bathing solution, axoplasm and sheath were usually separated at the end of incubation before extraction of the lipids. Lipids were extracted with chloroform-methanol and resolved by paper chromatography. The lipids which became labelled appeared to be the same in sheath and axoplasm. They were identified by cochromatography with known lipids and by chromatography of products formed from them by mild alkaline hydrolysis. They included phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, and probably somelysophosphatidylethanolamine. Some labelled components remained unidentified. Phosphatidylcholine was apparently present, but did not become significantly labelled either in sheath or in axoplasm, or in a squid's stellate ganglion. There was no evidence that separation from the sheath impaired the capacity of the axoplasm for lipid synthesis.  相似文献   

6.
Abstract— Acetylcholine and choline were identified and their concentrations measured, by means of gas chromatography/mass spectrometry, in extracts obtained from nerve fibers of the hindmost stellar nerve of the squid Sepioteuthis sepioidea. These compounds were quantitated in samples of stellar nerve devoid of giant fiber, intact giant nerve fiber, extruded axoplasm, and axoplasm-free giant nerve fiber sheaths. In 11 samples of stellar nerve devoid of giant fiber, weighing an average of 20.8 ± 2.3 mg ( s.e.m. ), 756 ± 91 pmol ACh and 8.65 ± 0.62 nmol of choline were found. The total ACh content of the largest fibre in this group (10 μ m in diameter), for a 5 cm length of nerve, is in the order of 0.16 pmol. The average wet weights of a single giant nerve fiber (270-420 μ m in diameter) and its separate components ( s.e.m .; in mg; number of fibers in parentheses) were: intact fiber, 4.58 ± 0.19 (25); extruded axoplasm, 3.38 ± 0.13 (20); sheaths, 1.21 ± 0.11 (16). The average ACh content per unit weight of sample was about 2-3 times higher in the sheaths (5-13 pmol-mg−1) than in the axoplasm (2-4 pmol mg−1), whereas the ACh concentrations estimated per unit volume of cellular water were about 40 times higher in the Schwann cell (107-222 μ m ) than in the axon (2-5 μ m ). These experimental findings establish the presence of ACh in the giant nerve fiber of S. sepioidea. They also indicate the Schwann cells themselves as the main source for the release of ACh, responsible for their long-lasting hyperpolarizations following the conduction of nerve impulse trains by the axon.  相似文献   

7.
The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. 32P-Labeled inorganic phosphate and gamma-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while [2-3H]myo-inositol and L-[3H(G)]serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized. [2-3H]glycerol was incorporated into phosphatidic acid, phosphatidylinositol, and triglyceride, and methyl-3H]choline and [1-3H]ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4-20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids.  相似文献   

8.
Summary The fine structure of the synapse between the second-order giant fibre and the third order-giant fibre of the squid Doryteuphis bleekeri was studied by means of electron microscope. In the synaptic region, the two giant fibres are arranged side by side. Many small processes from the third-order giant fibre penetrate the common sheath which separats the adjacent giant axons making synaptic contact with the second order giant axon.The contact surface consists of opposing two plasma membranes of adjacent axons separated by a narrow space of 20–30 m in width. The synaptic membranes are more electron dense and thicker than the other part of the axon membrane. The synaptic vesicles are concentrated exclusively in the presynaptic axon.The fine structural differences between giant synapse in the stellate ganglion of the squid and the giant-to-motor giant synapse of the crayfish were discussed.This work was supported by Grant Number B-3348 from the National Institutes of Health, United States Public Health Service, Department of Health, Education and Welfare.  相似文献   

9.
The origin of axoplasmic RNA in the squid giant fiber was investigated after exposure of the giant axon or of the giant fiber lobe to [3H]uridine. The occurrence of a local process of synthesis was indicated by the accumulation of labeled axoplasmic RNA in isolated axons incubated with the radioactive precursor. Similar results were obtained in vivo after injection of [3H]uridine near the stellate nerve at a sizable distance from the ganglion. Exposure of the giant fiber lobe to [3H]uridine under in vivo and in vitro conditions was followed by the appearance of labeled RNA in the axoplasm and in the axonal sheath. While the latter process is attributed to incorporation of precursor by sheath cells, a sizable fraction of the radioactive RNA accumulating in the axoplasmic is likely to originate from neuronal perikarya by a process of axonal transport.  相似文献   

10.
11.
When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon’s neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia–axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.  相似文献   

12.
Phospholipase A2 and acyltransferase were assayed and characterized in pure axoplasm and neural tissues of squid. Intracellular phospholipase A2 activity was highest in giant fiber lobe and axoplasm, followed by homogenates from retinal fibers, optic lobe and fin nerve. In most preparations, exogenous calcium (5 mM) caused a slight stimulation of activity. EGTA (2 mM) was somewhat inhibitory, indicating that low levels of endogenous calcium may be required for optimum activity. Phospholipase A2 was inhibited by 0.1 mM p-bromophenacylbromide, and was completely inactivated following heating.The level of acylCoA: lysophosphatidylcholine acyltransferase activity was higher in axoplasm and giant fiber lobe than in other neural tissues of the squid. Km (apparent) and Vmax (apparent) for oleoyl-CoA and lysophosphatidylcholine were quite similar for axoplasm and giant fiber lobe enzyme preparations. Acyltransferase activity was inactivated by heat treatment, and greatly inhibited by 0.2 mM p-chloromercuribenzoate, and to a lesser extent by 20 mM N-ethylmaleimide.Phospholipase A2 activity was present in fractions enriched in axolemmal membranes (separated from squid retinal fibers and garfish olfactory nerve) from both tissues, and it was also highly concentrated in vesicles derived from squid axoplasm. In all three preparations, phospholipase A2 activity was stimulated by Ca++ (5 mM) and inhibited by EGTA (2 mM). In addition, axoplasmic cytosol (114,000 g supernatant) retained a substantial portion of a Ca++-independent phospholipase A2, active in the presence of 2 mM EGTA. Acyltransferase activity was present at high content in both axolemma membrane rich fractions, and among subaxoplasmic fractions and axoplasmic vesicles.  相似文献   

13.
High-resolution electron microscopy is integrated with physicochemical methods in order to investigate the following preparations of the giant nerve fibers of the squid (Loligo pealii L.): (1) Thin sections of fibers fixed in four different fixatives; (2) fresh axoplasm stained negatively in solutions of different pH and composition; (3) chemically isolated threadlike elements of the axoplasm. A continuous, three-dimensional network can be identified in all these preparations of the axoplasm. The network is composed of coiled or looped unit-filaments ~30 A wide. The unit-filaments are intercoiled in strands ~ 70–250 A wide. The strands are oriented longitudinally in the axoplasm, often having a sinuous course and cross-associations. Microtubules are surrounded by intercoiled unit-filaments and filamentous strands. Calcium ions cause loosening and disintegration of the network configuration. UO2++ ions of a 1% uranyl acetate solution at pH 4.4 display a specific affinity for filamentous protein structures of the squid giant nerve fiber axoplasm, segregating the filamentous elements of the axoplasm in a coiled, threadlike preparation. The uranyl ions combine probably with the carboxyl groups of the main amino acids of the protein—glutamic and aspartic acids. It is proposed that by coiling/decoiling and folding/unfolding of the unit-filaments, shifts in physicochemical properties of the axoplasm are maintained.  相似文献   

14.
Na+ channels are present at high density in squid giant axon but are absent from its somata in the giant fiber lobe (GFL) of the stellate ganglion. GFL cells dispersed in vitro maintain growing axons and develop a Na+ channel distribution similar to that in vivo. Tunicamycin, a glycosylation inhibitor, selectively disrupts the spatially appropriate, high level expression of Na+ channels in axonal membrane but has no effect on expression in cell bodies, which show low level, inappropriate expression in vitro. This effect does not appear to involve alteration in Na+ channel turnover or axon viability. K+ channel distribution is unaffected. Thus, glycosylation appears to be involved in controlling Na+ channel localization in squid neurons.  相似文献   

15.
Proteins in the squid giant axon were labeled with 32P by in vitro incubation of isolated axoplasm with radioactive [γ-32P]adenosine triphosphate (ATP) and separated by polyacrylamide sodium dodecyl sulfate gel electrophoresis. The two major phosphorylated regions on the gel had molecular weights of 400 000 and 200 000. These two peaks appear to be neurofilament proteins of squid axoplasm. The same set of proteins was phosphorylated in the axoplasm regardless of whether the [γ-32P]ATP was applied in situ intracellularly or extracelarly. These results suggest that ATP in the extracellular space is, by some ATP-translocation mechanism, utilized in the process of intracellular phosphorylation. Measurements of the apparent influx of ATP across the squid axon membrane yielded results consistent with the view that ATP in the extracellular fluid could be transported into the axoplasm.  相似文献   

16.
Phospholipase A2 and acyltransferase were assayed and characterized in pure axoplasm and neural tissues of squid. Intracellular phospholipase A2 activity was highest in giant fiber lobe and axoplasm, followed by homogenates from retinal fibers, optic lobe and fin nerve. In most preparations, exogenous calcium (5 mM) caused a slight stimulation of activity. EGTA (2 mM) was somewhat inhibitory, indicating that low levels of endogenous calcium may be required for optimum activity. Phospholipase A2 was inhibited by 0.1 mM p-bromophenacylbromide, and was completely inactivated following heating.

The level of acylCoA: lysophosphatidylcholine acyltransferase activity was higher in axoplasm and giant fiber lobe than in other neural tissues of the squid. Km (apparent) and Vmax (apparent) for oleoyl-CoA and lysophosphatidylcholine were quite similar for axoplasm and giant fiber lobe enzyme preparations. Acyltransferase activity was inactivated by heat treatment, and greatly inhibited by 0.2 mM p-chloromercuribenzoate, and to a lesser extent by 20 mM N-ethylmaleimide.

Phospholipase A2 activity was present in fractions enriched in axolemmal membranes (separated from squid retinal fibers and garfish olfactory nerve) from both tissues, and it was also highly concentrated in vesicles derived from squid axoplasm. In all three preparations, phospholipase A2 activity was stimulated by Ca++ (5 mM) and inhibited by EGTA (2 mM). In addition, axoplasmic cytosol (114,000 g supernatant) retained a substantial portion of a Ca++-independent phospholipase A2, active in the presence of 2 mM EGTA. Acyltransferase activity was present at high content in both axolemma membrane rich fractions, and among subaxoplasmic fractions and axoplasmic vesicles.  相似文献   


17.
In previous studies of phosphorylation in squid stellate ganglion neurons, we demonstrated that a specific multimeric phosphorylation complex characterized each cellular compartment. Although the endogenous protein profile of cell body extracts (giant fiber lobe, GFL), as determined by Coomassie staining, was similar to that of axoplasm from the giant axon, in this study we show that the protein phosphorylation profiles are qualitatively different. Whereas many axoplasm proteins were phosphorylated, including most cytoskeletal proteins, virtually all phosphorylation in perikarya was confined to low molecular weight compounds (<6 kDa). Because phosphorylation of exogenous substrates, histone and casein, was equally active in extracts from both compartments, failure to detect endogenous protein phosphorylation in cell bodies was attributed to the presence of more active phosphatases. To further explore the role of phosphatases in these neurons, we studied phosphorylation in the presence of serine/threonine and protein tyrosine phosphatase (PTP) inhibitors. We found that phosphorylation of axonal cytoskeletal proteins was modulated by okadaic acid-sensitive ser/thr phosphatases, whereas cell body phosphorylation was more sensitive to an inhibitor of protein tyrosine phosphatases, such as vanadate. Inhibition of PTPs by vanadate stimulated endogenous phosphorylation of GFL proteins, including cytoskeletal proteins. Protein tyrosine kinase activity was equally stimulated by vanadate in cell body and axonal whole homogenates and Triton X-100 free soluble extracts, but only the Triton X soluble fraction (membrane bound proteins) of the GFL exhibited significant activation in the presence of vanadate, suggesting higher PTP activities in this fraction than in the axon. The data are consistent with the hypothesis that neuronal protein phosphorylation in axons and cell bodies is modulated by different phosphatases associated with compartment-specific multimeric complexes.  相似文献   

18.
Cellular and subcellular distributions of axolinin, the 260-kilodalton (kD) microtubule-associated glycoprotein originally purified from squid axons, in various squid tissues such as optical lobes, bundles of small nerve fibers (fin nerves), giant stellate ganglia, skin, muscle, liver, and gill, were immunologically studied using monoclonal antibodies specifically recognizing the polypeptide chain of axolinin. The following results were obtained: (1) Axolinin is confined to squid neurons and skin; (2) axolinin is localized in the axon whereas another 260-kD microtubule-associated protein, MAP B, is localized in the cell bodies; and (3) axolinin is localized mainly in the peripheral part of the axoplasm of the squid giant axon. The last result has confirmed our previous conclusion obtained using polyclonal antisera against axolinin, which contain antibodies recognizing not only axolinin-specific epitopes but also nonspecific epitopes. The physiological importance of the localization of axolinin in axons and the skin is discussed based on its possible relationship to excitability function.  相似文献   

19.
Summary The influx of magnesium from seawater into squid giant axons has been measured under conditions where internal solute control in the axon was maintained by dialysis. Mg influx is smallest (1 pmol/cm2 sec) when both Na and ATP have been removed from the axoplasm by dialysis. The addition of 3mm ATP to the dialysis fluid gives a Mg influx of 2.5 pmol/cm2 sec while the addition of [Na] i and [ATP] i gives 3 pmol/cm2 sec as a value for Mg influx; this corresponds well with fluxes measured in intact squid giant axons.The Mg content of squid axons is 6 mmol/kg axoplasm; this is unaffected by soaking axons in Li or Na seawater for periods of up to 100 min.  相似文献   

20.
Previous work has revealed that 4S RNA is the primary species of RNA in the axoplasm from the giant axons of the squid and Myxicola. This study shows that axoplasmic 4S RNA from the squid giant axon has the functional properties of tRNA. Axoplasmic RNA was charged with amino acids by aminoacyl-tRNA synthetases prepared from squid brain. The aminoacylation was prevented by incubating the RNA with RNase prior to running the reaction. The amino acid-RNA complex was labile at pH 9, which is characteristic of the acyl linkage between an amino acid and its tRNA. Aminoacyl-tRNA synthetase activity was also present in the axoplasm, primarily in the soluble fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号