首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Natural Boreal saline fens provide analogues for reclaimed wetland systems constructed with sodium‐rich tailings materials. These natural analogues can improve our understanding of vegetative controls on dominant ecohydrological processes (i.e. evapotranspiration (ET)) in constructed landscapes. Therefore, the objective of this study is to characterize ET within a natural boreal saline fen over a growing season to determine the primary hydro‐climatic controls using community‐scale ET measurements targeting dominant vegetation communities within different microforms along with environmental controls. ET rates were highest during periods of peak vegetation growth and temperatures between June and August, with rates decreasing slightly in July. Vegetation species' physiology was the dominant variable governing ET. The more salt tolerant species maintained higher ET rates despite the lower leaf area index and water table levels found within these species. The lower ET rates measured in July can be attributed to high water tables from above average precipitation causing soil inundation and salt stress, increasing stomatal closure. However, community plots containing Triglochin maritima maintained transpiration rates under the coupled stress conditions. Therefore, this is a potentially important species for use in boreal reclamation planting schemes. Last, the findings emphasize that the dominant vegetation selected for reclamation projects must coincide with the materials used (peat and subsurface materials), as results within this study demonstrate that some native boreal fen species (Calamagrostis inexpansa, Hordeum jubatum, and Juncus balticus) were unable to maintain transpiration rates during flood and saline conditions that can occur within the mining area of this region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
    
Climate change will drive significant changes in vegetation cover and also impact efforts to restore ecosystems that have been disturbed by human activities. Bitumen mining in the Alberta oil sands region of western Canada requires reclamation to “equivalent land capability,” implying establishment of vegetation similar to undisturbed boreal ecosystems. However, there is consensus that this region will be exposed to relatively severe climate warming, causing increased occurrence of drought and wildfire, which threaten the persistence of both natural and reclaimed ecosystems. We used a landscape model, LANDIS‐II, to simulate plant responses to climate change and disturbances, forecasting changes to boreal forests within the oil sands region. Under the most severe climate forcing scenarios (representative concentration pathway [RCP] 8.5) the model projected substantial decreases in forest biomass, with the future forest being dominated by drought‐ and fire‐tolerant species characteristic of parkland or prairie ecosystems. In contrast, less extreme climate forcing scenarios (RCPs 2.6 and 4.5) had relatively minor effects on forest composition and biomass with boreal conifers continuing to dominate the landscape. If the climate continues to change along a trajectory similar to those simulated by climate models for the RCP 8.5 forcing scenario, current reclamation goals to reestablish spruce‐dominated boreal forest will likely be difficult to achieve. Results from scenario modeling studies such as ours, and continued monitoring of change in the boreal forest, will help inform reclamation practices, which could include establishment of species better adapted to warmer and drier conditions.  相似文献   

3.
    
Oil sands exploration fragments the boreal landscape by constructing numerous drilling pads to assess underground petroleum reserves. Reclamation of these pads is challenging and slow, particularly for forest understory species. We investigated the feasibility of accelerated forest understory restoration on these temporary pads by taking advantage of the propagule bank and clonal regeneration strategy of many boreal plants. We covered and protected the forest floor (FF) with subsoil during winter pad construction. This forest floor protection (FFP) method was then compared with the current practice of stripping off, stockpiling, and then replacing the FF during the reclamation phase (rollback, RB) and to conventional clearcut (CC) harvesting. In the first growing season, surface disturbance as well as richness and cover of plant regeneration was evaluated; vegetation assessment was repeated in the fifth growing season. Although there were some slight differences between the communities in the FFP and CC treatments, likely associated with varying levels of residual slash and subsoil material, there were striking differences between the communities in the RB and FFP treatments. In addition, while establishment of deciduous tree species was similar between the FFP and CC treatments, there were very few trees found in the RB treatment. The study indicates that protection and careful uncovering of the FF during temporary drilling pad construction should be a technique of choice for forest reclamation used in the boreal forest. However, as RB will still play a part in the reclamation of these sites, management intervention will be required to achieve reclamation goals.  相似文献   

4.
本文应用极点排序和位置向量排序的方法对广东13个森林群落进行排序分析,并分别用极点排序图和位置向量排序的二维图和三维图表示排序的结果。同时对排序图的生态学意义及排序方法的优缺点进行讨论。结果表明,三维位置向量排序图能较好地把性质相近的群落类型聚在一起,可作为植被分类的辅助方法;积点排序图从一定程度上反映了植被的连续变化;极点排序与位置向量排序虽然取得一定结果,但由于同属线性排序,损失的信息量较多,寻求非线性排序方法是研究的方向。  相似文献   

5.
    
The trajectory of forests establishing on reclaimed oil sands mines in the Canadian boreal forest is uncertain. Soil microbes, namely mycorrhizal fungi, partly underlie successional trajectories of plant communities, yet their role in restoration is often overlooked. Here, we tested the relative importance of common management tools used in restoration—species planted and soil placement—on the recovery of ectomycorrhizal fungal communities over 4 years. Importantly, we further compared the community assembly of fungi on reclaimed landscapes to that in reference ecosystems disturbed to different degrees. This latter test addresses whether disturbance intensity is more important than common management interventions to restore fungal communities in these ecosystems. Three main findings emerged. (1) The effect of tree species planted and soil placement on ectomycorrhizal fungal communities establishing on reclaimed landscapes was dynamic through time. (2) Disturbances that remove or disrupt the organic layer of soils substantially affect the composition of ectomycorrhizal fungal communities. (3) Shifts in the community composition of ectomycorrhizal fungi were driven to a greater extent by disturbance severity than either tree species planted or soil placement.  相似文献   

6.
  总被引:1,自引:0,他引:1  
Stockpiling of cover soil can influence vegetation development following reclamation. Cover soil, comprising the upper 15–30 cm of the surface material on sites scheduled for mining, is commonly salvaged prior to mining and used directly or stockpiled for various lengths of time until it is needed. Salvaging and stockpiling causes physical, chemical, and biological changes in cover soils. In particular, stockpiling reduces the availability and vigor of vegetative propagules and seed, and can lead to increases in the abundance of some weedy species. This study uses data from monitoring plots to assess how stockpiling of cover soil impacts plant community development on reclaimed oil sands mine sites in northern Alberta. Development of plant communities differed distinctly between directly placed and stockpiled cover soil treatments even 18 years after reclamation. Direct placement of cover soil resulted in higher percent cover, species richness, and diversity. Nonmetric multidimensional scaling and multiresponse permutation procedure revealed compositional differentiation between the treatments. Indicator species analysis showed that direct placement treatment was dominated by perennial species while grasses and annual forb species dominated sites where stockpiled soil was used. Results indicate that stockpiling leads to slower vegetation recovery while direct placement of cover soil supports more rapid succession (from ruderal and annual communities to perennial communities). In addition, direct placement may be less costly than stockpiling. However, scheduling of salvage and placement remains a challenge.  相似文献   

7.
    
Investigations of biophysical changes on earth caused by anthropogenic disturbance provide governments with tools to generate sustainable development policy. Canada currently experiences one of the fastest rates of boreal forest disturbance in the world. Plans to conserve the 330 000 km2 boreal forest in the province of Alberta exist but conservation targets and schedules must be aligned with rates of forest disturbance. We explore how disturbance rate, and the accuracy with which we detect it, may affect conservation success. We performed a change detection analysis from 1992 to 2008 using Landsat and SPOT satellite image data processing. Canada's recovery strategy for boreal caribou (Rangifer tarandus caribou) states that ≤35% of a caribou range can be either burned or within 500 m of a man‐made feature for caribou to recover. Our analyses show that by 2008 78% of the boreal forest was disturbed and that, if the current rate continues, 100% would be disturbed by 2028. Alberta plans to set aside 22% for conservation in a region encompassing oil sands development to balance economic, environmental, and traditional indigenous land‐use goals. Contrary to the federal caribou recovery strategy, provincial conservation plans do not consider wildfire a disturbance. Based on analyses used in the provincial plan, we apply a 250 m buffer around anthropogenic footprints. Landsat image analysis indicates that the yearly addition of disturbance is 714 km2 (0.8%). The higher resolution SPOT images show fine‐scale disturbance indicating that actual disturbance was 1.28 times greater than detected by Landsat. If the SPOT image based disturbance rates continue, the 22% threshold may be exceeded within the next decade, up to 20 years earlier than indicated by Landsat‐based analysis. Our results show that policies for sustainable development will likely fail if governments do not develop time frames that are grounded by accurate calculations of disturbance rates.  相似文献   

8.
    

Question

Understorey development is a great challenge in the restoration of many forest sites, particularly when sources of vegetation propagules are scarce. Can placement of propagule‐rich soil patches within reclaimed landscapes otherwise covered with propagule‐poor material promote the dispersal of vegetation from the patches into the surrounding areas?

Location

Large reclamation site in the Canadian (Alberta) boreal forest.

Method

Patches of propagule‐rich forest floor material were placed within a matrix of propagule‐poor peat material. Vegetation assessments (cover estimates, seed rain) were done surrounding these patches in the third and fourth growing seasons.

Results

There was significant egress of species from the patches into the peat after four growing seasons, and overall species associated with the patches had higher cover in the peat than species that were associated with the peat itself. While wind‐dispersed herbaceous species from the patches were found at the leading edge of the egressing community, most species used vegetative propagation, resulting in short egress distances. Several patch‐associated species were found in seed rain collected on the peat areas but were not observed in this material, suggesting seedbed limitations.

Conclusion

Despite the relatively short distance of egress, this experiment suggests that placement of propagule‐rich soil material within reclaimed landscapes will promote egress into adjacent propagule‐poor soil material.  相似文献   

9.
    
Understanding the effects of reclamation treatments on plant community development is an important step in setting realistic indicators and targets for reclamation of upland oil sands sites to forest ecosystems. We examine trends in cover, richness, evenness, and community composition for four cover soil types (clay over overburden, clay over tailings sand, peat‐mineral mix over overburden, and peat‐mineral mix over tailings sand) and natural boreal forests over a 20 year period in the mineable oil sands region of northern Alberta, Canada. Tree, shrub, and nonvascular plant species cover showed similar increases over time for all reclamation treatments, with corresponding declines in forb and graminoid cover with time. These trends resemble those in the natural boreal forests of the region and the trajectory of community development for the reclamation treatments appears to follow typical early successional trends for boreal forests. Species richness and diversity of natural forest differed significantly from reclamation treatments. Nonmetric multidimensional scaling ordination and multi‐response permutation procedure revealed that species composition was not affected by reclamation treatment but clearly differed from natural forest. Analysis of species co‐occurrence indicated random plant community assembly following reclamation, in contrast to a higher proportion of nonrandom plant community assembly in natural forests. Thus, reclaimed plant communities appear to be unstructured through year 20 and assembly is still in progress on these reclaimed sites.  相似文献   

10.
This study was conducted to evaluate the effects of wildfires on ectomycorrhizal (EM) fungal communities in Scots pine ( Pinus sylvestris ) stands. Below- and above-ground communities were analysed in terms of species richness and evenness by examining mycorrhizas and sporocarps in a chronosequence of burned stands in comparison with adjacent unburned late-successional stands. The internal transcribed spacer (ITS)-region (rDNA) of mycobionts from single mycorrhizas was digested with three restriction enzymes and compared with an ITS–restriction fragment length polymorphism (RFLP) reference database of EM sporocarps. Spatial variation seemed to be more prominent than the effects of fire on the EM fungal species composition. Most of the common species tended to be found in all sites, suggesting that EM fungal communities show a high degree of continuity following low-intensity wildfires. Species richness was not affected by fire, whereas the evenness of species distributions of mycorrhizas was lower in the burned stands. The diversity of EM fungi was relatively high considering that there were only three EM tree species present in the stands. In total, 135 EM taxa were identified on the basis of their RFLP patterns; 66 species were recorded as sporocarps, but only 11 of these were also recorded as mycorrhizas. The species composition of the below-ground community of EM fungi did not reflect that of the sporocarps produced. EM fungal species present in our ITS–RFLP reference database accounted for 54–99% of the total sporocarp production in the stands, but only 0–32% of the mycorrhizal abundance.  相似文献   

11.
    
Open‐pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re‐establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (< 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.  相似文献   

12.
We examined the pattern of species composition of breeding birds along urban-rural gradients in the Osaka Prefecture, western Japan. We recorded the proportion of nine types of land-use and the presence/absence of each of 76 breeding birds in 5 km square quadrats on a map of the Prefecture. The proportion of woodland and farmland which increased from urban to rural areas were two major enviornmental gradients according to Principal Component Analysis of the nine types of land-use. Ordination by Canonical Correspondence Analysis (CCA) showed that the breeding bird distribution differentiated along the two major clines, woodland and farmland. The avifauna changed successively along these environmental gradients. There were no discrete boundaries of the distribution of bird species groups. We tentatively classified five groups of quadrats on the ordination plane of the sample score. The geographic position of these five groups on a map preserved the environmental gradient, but showed that water (seashore and river) was a stronger influence on bird species composition than land-use pattern. Although the diversity of land-use seemed to raise species richness in the third group, the less diverse, woodland-rich group contained as many species as the third group. Four groups of bird species, and one group in which species occurred in more than 90% of the quadrats, were classified in the CCA-ordination plane. The occurrence of these bird groups correlated with land-use; the first group with woodland area, the second with scatter woodland, the third with farmland and the fourth with seashore.  相似文献   

13.
    
This study was undertaken to determine if use of stratified organic layers of intact litter, fragmented litter, and humus on the forest floor (LFH) improves establishment of upland native boreal plant species during oil sands reclamation in Alberta, Canada. The abundance and composition of vascular plant species in the soil propagule bank were determined for LFH and peat materials before salvage from donor sites and 18 months after application on the receiver site. Applications of 10 and 20 cm were evaluated. Various soil properties were assessed to determine impacts of donor materials. In the growth chamber, LFH donor material had significantly more plant species emerge (37) from the propagule bank than did peat donor material (19). In the field, LFH treatments had significantly higher species richness (49, 47, 24, and 25 species for LFH 10 cm, LFH 20 cm, peat 10 cm, and peat 20 cm treatments, respectively), plant abundance, and soil nutrients than peat treatments. Application thickness of peat had little effect, but 20 cm of LFH was more beneficial for plant community establishment than 10 cm. LFH treatments had narrower C:N ratios and higher soluble potassium and available phosphorus than peat. Applying 10 versus 20 cm of donor material increased admixing of fine‐textured subsoil, reducing organic carbon, nitrogen, and potassium; these effects were greater for LFH than peat treatments. Thus, addition of LFH aids in creating diverse ecosystems on reclaimed upland landscapes by providing a source of propagules for revegetating upland boreal forest communities and improving nutrient availability for plants.  相似文献   

14.
    
The structure of animal communities has long been of interest to ecologists. Two different hypotheses have been proposed to explain origins of ecological differences among species within present‐day communities. The competition–predation hypothesis states that species interactions drive the evolution of divergence in resource use and niche characteristics. This hypothesis predicts that ecological traits of coexisting species are independent of phylogeny and result from relatively recent species interactions. The deep history hypothesis suggests that divergences deep in the evolutionary history of organisms resulted in niche preferences that are maintained, for the most part, in species represented in present‐day assemblages. Consequently, ecological traits of coexisting species can be predicted based on phylogeny regardless of the community in which individual species presently reside. In the present study, we test the deep history hypothesis along one niche axis, diet, using snakes as our model clade of organisms. Almost 70% of the variation in snake diets is associated with seven major divergences in snake evolutionary history. We discuss these results in the light of relevant morphological, behavioural, and ecological correlates of dietary shifts in snakes. We also discuss the implications of our results with respect to the deep history hypothesis. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 476–486.  相似文献   

15.
南泥湾片段森林蝗虫群落多样性比较   总被引:9,自引:2,他引:7       下载免费PDF全文
刘缠民  廉振民 《生态学报》2003,23(6):1222-1229
应用多样性指数、排序和多元逐步回归分析方法比较了南泥湾片断化森林的蝗虫群落结构,并进行了环境因素的解释。结果显示:在南泥湾,树木破坏不严重的片断化森林,随森林面积的减小,林缘草层蝗虫种类、多样性指数和均匀度指数差异不大;林中草层蝗虫密度、多样性指数和均匀度指数减小。在面积小、树木破坏严重、植被结构发生明显改变的片断森林林中草层,相对于树木破坏不严重的片断化森林,蝗虫的密度、多样性指数和均匀度指数明显增大;而林缘草层蝗虫的密度和群落优势度指数上升,多样性指数和均匀度指数下降。以主分量分析方法可明显将林中草层蝗虫群落分为森林破坏严重和不严重两种类型。通过多元逐步回归分析发现,影响片断化森林蝗虫群落结构和多样性的主要因素有片断森林面积、森林植被结构的复杂性、食料植物的多少等几个方面。  相似文献   

16.
DNA-based pyrosequencing analysis of the V1- V3 16S rRNA gene region was used to identify bacteria community and shift during early stages of wood colonization in boreal forest soils. The dataset comprised 142,447 sequences and was affiliated to 11 bacteria phyla, 25 classes and 233 genera. The dominant groups across all samples were Proteobacteria, followed by Bacteroidetes, Acidobacteria, Actinobacteria, Amatimonadetes, Planctomycetes and TM7 group. The community structure of the primary wood-inhabiting bacteria differed between types of forest soils and the composition of bacteria remained stable over prolonged incubation time. The results suggest that variations in soil bacterial community composition have an influence on the wood-inhabiting bacterial structure.  相似文献   

17.
    
  相似文献   

18.
    
While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life‐history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land‐use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.  相似文献   

19.
    
《Ecohydrology》2018,11(4)
Ecohydrological functioning of natural Boreal forest in Canada's Boreal Plains is a product of interactions between soil hydrophysical characteristics and hydrogeochemical processes. These interactions create a moisture–nutrient gradient within the surface soils, increasing along low‐relief transitions from upland to riparian zone, and in turn influence the distribution of vegetation communities. It is not yet known if/when analogous ecohydrological functions can be achieved in constructed uplands following industrial disturbance, such as that following oil sands development. Hence, to assess this, we studied interactions between hydrogeochemical processes and vegetation colonization in a constructed upland relative to hydrophysical properties of 2 reclamation cover substrates during a typical continental climate's growing season. Our results indicated that in 3 years of postconstruction, the establishment of a moisture–nutrient gradient that supports vegetation colonization along slope positions was still limited by heterogeneity of cover substrates. Portions of the upland under peat–mineral mix were characterized by lower nutrient availability, high moisture content, and establishment of planted shrubs and trees. In contrast, forest floor materials plots were characterized by poor soil quality, but higher nutrient availability and greater colonization of invasive grasses and native shrubs. We suggest that the colonization of underdeveloped soils by invasive grasses may facilitate pedogenic processes and thus should be accepted by reclamation managers as a successional milestone in the recovery of ecohydrological functioning of constructed uplands. Poor soil structure under forest floor materials could not support edaphic conditions required by plants to efficiently utilize fertilizer, making this practise futile at the early stage of soil development.  相似文献   

20.
The bat fauna of the Mora excelsa-dominated rainforest in the Victoria-Mayaro Forest Reserve (VMFR) in south-east Trinidad was assessed over a six-week period. Trapping effort totaled 271 mist net hours and caught 143 bats of 22 species at a rate of one bat every two net-hours. Simpsons diversity index (1/D) was 1.28 for primary Mora forest and extrapolation using Chaos' estimator, a non-parametric method, estimated the total number of species as 39. Phyllostomid bats of the subfamilies Phyllostominae and Stenodermatinae were well represented, and frugivores predominated in number, accounting for 77% of all captures in primary forest. The most abundant bat, the ground-storey frugivore, Carollia perspicillata, accounted for 43% of all captures in primary forest and, in contrast to most bats, was also abundant on man-made paths through the forest. Four species not previously recorded from the reserve, Tonatia bidens, Trachops cirrhosus, a Myotis sp., and the rare Phylloderma stenops, were captured, bringing the total number of bats species known from the reserve to 35. Thus, over half (52%) of Trinidad's 67 bat species occur in this one forest reserve, making it a high priority area for effective protection and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号