首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of acetylcholinesterase (AChE) and choline acetyltransferase (ChAc) were investigated by biochemical and histochemical methods. After ligature of one of the sciatic nerves of the rat for varying times—4, 14, 20 and 44 h—the normal levels and the accumulation of AChE and ChAc activities were investigated. It can be inferred from the results that there is a rapid accumulation of AChE activity just proximal to the ligature, while the increase in ChAc activity is less pronounced. Distal to the ligature the level of AChE is above the control value whereas, in contrast to this, the ChAc activity is significantly decreased. Histochemical demonstration of the two enzymes indicates that they are present in the cholinergic axons. The reaction end-product produced by AChE occurs within vesicles and neurotubules, while the endproduct due to ChAc appears to be free in the axoplasm, bound to neurofilaments and on the outer surface of vesicles and tubules.  相似文献   

2.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

3.
Abstract— Total cholinesterase, acetylcholinesterase, (AChE) and monoamine oxidase (MAO) activity and protein content were determined throughout the embryonic life of the chick in spinal and sympathetic ganglia. The greatest part of total cholinesterase activity was due to AChE.
AChE and MAO activity increased in both spinal and sympathetic ganglia very similarly from the 6th to the 12th day of incubation; from this day on a significant divergence occurred, mainly owing to a steady fall in spinal ganglion AChE, which decreased to approximately one tenth of the maximum value. The ratio of MAO activity in sympathetic and spinal ganglia increased from the 8th day onwards and approached 5·0 at hatching. The ratio between sympathetic and spinal ganglia, for AChE, choline acetylase (ChAc) and MAO activity, suggests a relationship between the maturation of the synapse in the sympathetic ganglia and the maximal activity of these enzymes.  相似文献   

4.
SURFACE CHARGE OF CHOLINE ACETYLTRANSFERASE FROM DIFFERENT SPECIES   总被引:5,自引:2,他引:3  
—The adsorption of partially purified choline acetyltransferase (ChAc) from cat, rat, guinea-pig and pigeon brains by the cation exchange resins, CM-Sephadex (C-50) and Amberlite CG-50 II, was studied at various pH values and ionic strengths. ChAc from cat and rat were more strongly adsorbed by cation exchangers and therefore have a stronger net positive surface charge than those from guinea pig and pigeon. Experiments showed that the difference in adsorption between these two groups of enzymes could not be explained by overloading of the resin, by competitive effect of other proteins present in the enzyme preparations or by the presence of any component suppressing the adsorption of ChAc in any of the enzyme preparations. The adsorption of ChAc by a cation exchanger is very similar to its binding to synaptosome membranes. The significance of the positive surface charge of ChAc in studies on the compartmentation of ChAc in synaptosomes is discussed.  相似文献   

5.
Abstract— The severity of mental changes in malnourished children is related to both the period of development when the malnutrition occurs and the amount of environmental stimulation. In the present study the effect of imposing protein undernutrition during the period of gestation or postweaning period, and protein-energy undernutrition during the suckling period on cholinergic enzyme activity was investigated in the rat. Six different dietary treatments were given and the activity of ChAc, ChE, and AChE determined in the forebrain, brainstem, and cerebellum of male rats on day 49. Undernutrition imposed during gestation, suckling or postweaning all resulted in changes in cholinergic enzyme activity. The direction and degree of change of enzyme activity depended on the period when undernutrition was imposed as well as the brain region. In the forebrain ChE and AChE activities were altered, in the brainstem, ChAc, ChE and AChE activities were altered, and in the cerebellum ChAc activity was altered. The effect on the activity of the individual cholinergic enzymes was complex and was not the same in the different regions of the brain or even for the same brain region exposed to undernutrition during different periods of development. These results along with earlier work indicate that cholinergic enzyme activity in brain of undernourished rats can be altered by both the period of development when undernutrition is imposed and the amount of environmental stimulation.  相似文献   

6.
—The distribution of choline acetyltransferase (ChAc, EC 2.3.1.6) and l -glutamate 1-carboxylyase (glutamate decarboxylase, GAD, EC 4.1.1.15) was studied in serial frontal slices of the substantia nigra (SN) (pars compacta, PC; pars reticulata, PR; an intermediate region, IR) as well as in other brain areas from post mortem tissue of control and Parkinsonian patients. Within the SN from control brain ChAc and GAD activities showed a distinctive distribution: ChAc activity in PC was higher than in PR and IR by 427% and 253% respectively and within PC the enzyme activity in the rostral part exceeded that in the control part by 353%. The GAD activity in PC was higher by 41% than that in PR and within PC seemed to be higher in the caudal than in the rostral part. For both enzyme activities there were no significant differences between PR and IR or within these regions. In Parkinsonian brain both ChAc and GAD activities were reduced to 15-25% of controls in all 3 regions of the SN. The distinctive distribution of ChAc and GAD activity found in the SN of control brain was abolished: no difference was observed between the 3 regions. However, within PC the ChAc activity was lower in the medial than in the rostral part. Since nigral ChAc is possibly located in interneurons, the decrease in enzyme activity may be connected with the cell loss observed in the SN of Parkinsonian brain. By contrast, nigral GAD is probably contained in terminals of strio-nigral neurons and the decrease in enzyme activity in Parkinson's disease in the absence of striatal cell loss, may reflect a change in the functional state of these GABA neurons. Among various areas of control brains ChAc activity was highest in caudate nucleus and putamen while GAD was highest in SN. caudate nucleus, putamen and cerebral cortex. In Parkinsonian brain the most severe reduction in ChAc and GAD activities was found in the SN.  相似文献   

7.
Synopsis Histochemical techniques were employed for the localization of choline acetyltransferase (ChAc; EC 2.3.1.6.), acetylcholinesterase (AChE; EC 3.1.1.7) and cholinesterase (ChE; EC 3.1.1.8) activities in dorsal and ventral roots and dorsal root ganglia of the bullfrog. AChE activity was present in most of the neuronal elements of dorsal root ganglia, in some nerve fibres in the dorsal roots, and in all nerve fibres in ventral roots. ChE activity in dorsal root ganglia and in the dorsal roots was confined to non-neuronal elements. No ChE activity was demonstrable in the ventral roots. ChAc activity was localized in many neurons of the dorsal root ganglia and in some nerve fibres of the dorsal roots; however, none of the ventral root fibres were visibly reactive. Some supportive cells of the dorsal roots and ganglia contained small amounts of ChAc activity. Except for the ventral roots, the histochemical distribution of AChE and ChAc activity was similar. The results of solubility studies indicated that under the histochemical conditions, approximately 50% of the ChAc remained bound to the dorsal roots and ganglia, whereas more than 90% of the ChAc in the ventral roots was soluble. This would account for the lack of reactivity in ventral root fibres. Differences in ChAc solubility are discussed in relation to the interpretation of histochemical data and in relation to the concept of multiple forms of ChAc. The results of this study indicate that at least one-third of the neurons of the dorsal root ganglia contain significant levels of the enzymes involved in both the synthesis and hydrolysis of acetylcholine.  相似文献   

8.
—A surgical technique for sympathetically denervating the vas deferens has been evaluated biochemically. A slight fall in soluble muscle protein content and no significant change in DNA content of the operated vas deferens were found. This indicates that the surgical procedure causes only a slight degree of tissue damage and may be useful for investigating the cellular localization and properties of noradrenaline metabolizing enzymes. In three species examined (rat, guinea pig and rabbit), monoamine oxidase activity of the vas deferens fell by approximately 50 per cent after denervation. The time course of the fall in monoamine oxidase activity of rat vas deferens was parallel to that of the disappearance of noradrenaline suggesting that this proportion of the total enzyme activity had a neuronal localization. The remaining enzyme activity is presumably located extraneuronally. Significant falls in catechol-O-methyl transferase activity were found in rat and rabbit vas deferens after denervation but not in guinea pig. The rabbit and rat vas deferens had respectively approximately 60 and 30 per cent of the catechol-O-methyl transferase activity associated with the sympathetic nerves. A complete loss of DOPA decarboxylase and tyrosine hydroxylase activities occurred in rat vas deferens after denervation, suggesting that these noradrenaline synthesizing enzymes have an entirely neuronal localization.  相似文献   

9.
The levels of certain amines (catecholamines, 5-HT, and ‘histamine’) and of certain enzymes (tyrosine hydroxylase, tryptophan hydroxylase, ChAc, or AChE) in whole brain or selected brain areas of rats and mice susceptible to audiogenic seizure have been compared with the levels in matched groups of non-sensitive animals. Sensitive groups included both those where susceptibility is inborn and those where it is induced by administration of methionine sulphoximine or thiosemicarbazide. No significant difference was found which could be correlated with susceptibility to audiogenic seizure.  相似文献   

10.
Abstract— A microscale modification for the preparation of subcellular fractions employing milligram and submilligram amounts of neuronal tissue (brain nuclei and autonomic ganglia) is described.
Electron microscope characterization and enzymic studies were carried out on the six subcellular fractions of sympathetic ganglia of cat thus prepared.
The synaptosomal preparations obtained from individual ganglia were poorer in their nerve ending content than those obtained from brain by previous investigators. The highest RSA for AChE was found in layer L2 which was rich in membranes and vesicle components. ChAc activity was also highly concentrated in layers L2 and L3 (membranes, nerve ending-like particles, mitochondria and 'ghosts'). MAO activity was particularly high in the layers L4 and L5 which contained a large number of mitochondria. Layer L1 (membrane fragments) and particularly layer L6 which contained mainly collagen fibres, were low in activity of all three enzymes.
After preganglionic denervation, both ChAc and AChE activities were significantly reduced in the purest nerve ending fraction, L3 while MAO activity was practically unchanged.  相似文献   

11.
Abstract— (1) On analysis of human brain tissue to determine its choline acetyltransferase (ChAc) content the recovery of enzyme from many regions is very poor when the tissue is acetone-dried and then extracted in the standard manner; for this reason the method is unsuitable when quantitative recoveries are required; it is preferable to prepare sucrose homogenates and activate these with ether before incubation.
(2) From measurements made on homogenates of one adult brain the highest concentration of ChAc was found in the putamen and the lowest in the corpus callosum. The caudate nucleus also had a high activity. As in other mammals, the concentration of enzyme in the cerebellum was found to be low. Analogous results were obtained on a nine-year-old brain but the level of ChAc activity was generally higher than in the older brain.
(3) During foetal development up to thirty-two weeks, ChAc is higher in the cerebellum than in the caudate, the thalamus, corpora quadrigemina, medulla and spinal cord. In all regions the concentration and total amount of enzyme rise fairly steadily up to this time; between 24 and 32 weeks, however, its concentration in the cerebellum and corpora quadrigemina falls slightly although the total increases considerably.
(4) Comparison of the results with the data of other authors indicates general agreement between the distribution of the enzyme in the human brain and its distribution in other mammals, especially the rhesus monkey. The corpus callosum may be an exception since in man it contains little ChAc while in lower mammals it seems to have relatively high concentrations of both ACh and ChAc.
(5) In comparing the values for ChAc reported here with the values for AChE reported by others, three tissues, the globus pallidus, substantia nigra and cerebellum are found to be exceptional in that relative to their concentration in the caudate the activity of ChAc is only about one-tenth that of AChE.  相似文献   

12.
—The effect of different qualities of ionizing radiation on the activity of brain enzymes involved in the metabolism of neurotransmitters in specific regions of the brain of rats was investigated. Groups of Sprague-Dawley adult male rats were exposed to approx. 18,000 rads of radiation either rich in neutrons or rich in gamma rays. It was found that, when the animals were exposed to radiation rich in neutrons, monoamine oxidase (MAO) activity was markedly decreased in all brain areas studied. In contrast, a very marked increase in the activity of this enzyme was observed when the animals received the same dose of radiation rich in gamma rays. Relatively minor changes were observed in the activity of choline acetyl transferase (ChAc). Acetylcholinesterase (AChE) activity did not change appreciably.  相似文献   

13.
The choline acetyltransferase (ChAc) activity was measured in the optic centres of chick embryos after early removal of the optic cup and of young chicks after monolateral extirpation of the right eyeball after hatching. The contralateral optic lobes were thus deprived of their complement of retinal fibres. The following results were obtained: in chick embryos the ChAc was slightly lower in the deafferented lobe between the 10th and the 14th day of incubation; between the 14th and the 17th day a critical fall in activity was observed leading to a significant ChAc loss of 71 per cent. In eye deprived chicks no significant change in total ChAc activity occurred during the first postoperative month; significant changes were found only in the second month. The results reached so far suggest that removal of retinal fibres does not cause short term changes in optic centre ChAc in either the embryo or the chick. ChAc contained in nerve cell bodies seems independent of synapses and its behaviour is interpreted as a reflection of metabolic disturbance of the centre.  相似文献   

14.
Abstract— Pentobarbitone sodium anaesthesia was found to produce an increase in protein content in some regions of the rat brain, i.e. posterior cortex, caudate nucleus, and a decrease in protein content in the ventral cortex.
Acetylcholinesterase expressed in terms of wet weight was found to increase in the cerebellum, medulla, and to decrease in the medial cortex, hippocampus, thalamus and caudate nucleus. The changes in activity were not explicable in terms of a direct effect of the anaesthetic on the enzyme. A decrease in protein content of rat brain was observed in the frontal cortex, ventral cortex, hippocampus and caudate nucleus after electrical shocks. Following shock avoidance conditioning procedure (shuttle-box), decreases in protein content were observed in the medial cortex, posterior cortex, cerebellum and ventral cortex; in the thalamus an increase in protein content was observed.
Changes in AChE activity were observed following footshock in the frontal cortex and medulla where there was an increase in activity and in the caudate nucleus, hypothalamus, thalamus, and olfactory tubercle where there was a decrease in activity.
Following shock avoidance conditioning the activity of the AChE increased in posterior cortex, hippocampus, thalamus and hypothalamus and the activity of the enzyme decreased in the ventral cortex.  相似文献   

15.
The rate of ACh diffusion through a 0·8 mm thick slice from the surface of the rat cerebral cortex, under aerobic conditions at 37°C, was determined by bathing the intact surface of the slice (compartment A) with ACh containing buffer and determining the concentration of ACh in buffer bathing the cut surface of the slice (compartment B). With 1 or 5 mM-ACh in compartment A no ACh was detectable in compartment B within 3 h unless at least 95 per cent of the AChE, as assessed on homogenates, was inhibited. With a given level of AChE inhibition, the rate of ACh diffusion was dependent on its concentration in compartment A. With 1 mM-ACh in compartment A the difference between the rates of hydrolysis of ACh during diffusion through slices with an AChE inhibition of 98·3 and 99·4 per cent, as assessed by AChE assays of homogenates made from the slices, was only 6 per cent of the difference between the rates of hydrolysis of 1 m-ACh by the homogenates of that part of the slices through which diffusion took place. For 5 mM-ACh and levels of 95 and 99·2 per cent inhibition the corresponding value was 10-3 per cent. Since the concentration of ACh must fall across the slice it is not possible to calculate from these figures the number of enzyme sites involved in the hydrolysis during diffusion, i.e. the concentration of extracellular AChE. The implications of these observations are discussed, particularly in relation to studies of the release of ACh from the cerebral cortex in vivo  相似文献   

16.
Aggregation of the enzyme acetyl-CoA: choline-O-acetyltransferase (ChAc, EC 2.3.1.6) which appears to be homogeneous has been observed. The molecular weight of the most abundant form of ChAc was estimated by gel filtration and sucrose gradient centrifugation to be in the range 58,000-62,000. The most frequently encountered aggregates were much larger and eluted in the void volume from Sephadcx® G-100 and G-150 indicating molecular weights in excess of 400,000. In fact, they were subsequently found to be 1.2 × 106 and 1.9 × 106 by sucrose gradient centrifugation. The percentage of activity associated with high molecular weight ChAc increased with purification, but these aggregates disappeared after storage for 2-3 weeks at ?20°C. The loss occurred independently of any fall in enzymic activity in the preparations examined.  相似文献   

17.
CHOLINE ACETYLTRANSFERASE CONTENT IN DISCRETE REGIONS OF THE RAT BRAIN STEM   总被引:10,自引:5,他引:5  
—Choline acetyltransferase (ChAc) content of 50 separate rat brain stem nuclei and cerebellum removed by microdissection was determined using a sensitive radiometric assay. The distribution of ChAc activity is uneven, with extremely high levels in the cranial motor nuclei and the nucleus salivatorius. Low ChAc concentrations were observed in the cranial sensory nuclei, the nuclei of the reticular formation, the raphe nuclei and the nuclei of the acoustic system. The lowest ChAc levels were measured in the cerebellum. Comparison of the distribution of ChAc with histochemical localization of acetylcholinesterase revealed generally good agreement, and notable exceptions are discussed.  相似文献   

18.
Abstract— Pinacolyl S -(2-dimethylaminoethyl)methylphosphonothioate (compound I) and its quaternary analogue (compound II), are potent anticholinesterases, that form a very stable phosphonylated AChE and differ in their in vitro anticholinesterase potency by a factor of two, but have widely differing lipid solubilities.
In vitro , compound I diffused through a cerebral cortex slice when applied to the intact surface at twelve times the rate of compound II and through a diaphragm segment at four times the rate. When applied to the intact surface of a cerebral cortex slice or a diaphragm segment for 10 min, compound I gained access to AChE sites more readily than compound II but the difference was much less than the difference in their lipid solubilities. There was no discontinuity in the percentage AChE inhibition versus logarithm of the concentration of compound II, indicating that there was no clear separation of AChE into two fractions which differed greatly in their accessibility to quaternary compounds. Both compounds gained access to AChE sites in cerebral cortex slices more readily than in diaphragm segments.
In vivo , the peak plasma levels and the rates of removal from the plasma of free inhibitor were similar for both compounds, given subcutaneously in equimolar amounts. Compound I in high doses inhibited over 90 per cent of the AChE in the cerebral cortex and the diaphragm; compound II even in lethal doses produced only marginal inhibition of AChE in the cerebral cortex and only 50–60 per cent inhibition of AChE in the diaphragm.
These results indicate that the in vivo distribution of quaternary compounds is different from that observed in vitro . The implications of this are discussed.  相似文献   

19.
Abstract: Ascorbic acid and glutathione (GSH) are antioxidants and free radical scavengers that provide the first line of defense against oxidative damage in the CNS. Using HPLC with electrochemical detection, we determined tissue contents of these antioxidants in brain and spinal cord in species with varying abilities to tolerate anoxia, including anoxia-tolerant pond and box turtles, moderately tolerant garter snakes, anoxia-intolerant clawed frogs (Xenopus laevis), and intolerant Long-Evans hooded rats. These data were compared with ascorbate and GSH levels in selected regions of guinea pig CNS, human cortex, and values from the literature. Ascorbate levels in turtles were typically 100% higher than those in rat. Cortex, olfactory bulb, and dorsal ventricular ridge had the highest content in turtle, 5–6 µmol g?1 of tissue wet weight, which was twice that in rat cortex (2.82 ± 0.05 µmol g?1) and threefold greater than in guinea pig cortex (1.71 ± 0.03 µmol g?1). Regionally distinct levels (2–4 µmol g?1) were found in turtle cerebellum, optic lobe, brainstem, and spinal cord, with a decreasing anterior-to-posterior gradient. Ascorbate was lowest in white matter (optic nerve) in each species. Snake cortex and brainstem had significantly higher ascorbate levels than in rat or guinea pig, although other regions had comparable or lower levels. Frog ascorbate was generally in an intermediate range between that in rat and guinea pig. In contrast to ascorbate, GSH levels in anoxia-tolerant turtles, 2–3 µmol g?1 of tissue wet weight, were similar to those in mammalian or amphibian brain, with no consistent pattern associated with anoxia tolerance. GSH levels in pond turtle CNS were significantly higher (by 10–20%) than in rat for several regions but were generally lower than in guinea pig or frog. GSH in box turtle and snake CNS were the same or lower than in rat or guinea pig. The distribution GSH in the CNS also had a decreasing anterior-to-posterior gradient but with less variability than ascorbate; levels were similar in optic nerve, brainstem, and spinal cord. The paradoxically high levels of ascorbate in turtle brain, which has a lower rate of oxidative metabolism than mammalian, suggest that ascorbate is an essential cerebral antioxidant. High levels may have evolved to protect cells from oxidative damage when aerobic metabolism resumes after a hypoxic dive.  相似文献   

20.
Dipyridamole (DPR) and nitrobenzylthioinosine (NBI) inhibition of adenosine accumulation in synaptoneurosomes derived from rat cerebral cortex, rat cerebellum, guinea pig cerebral cortex and guinea pig cerebellum was investigated. The inhibition of adenosine accumulation by NBI was observed to be distinctly biphasic in both guinea pig and rat synaptoneurosomes. Such biphasic inhibition consisted of a nM potency component to inhibition, accounting for 20–30% of the maximum inhibition, and a μM potency component, accounting for the remaining 70–80% maximum inhibition. Such an inhibitory profile contrasts sharply with that of DPR which appears monophasic, with a mean IC50 of between 10−7 M and 10−6 M, in all rat and guinea pig synaptoneurosomes preparations studied.Further differences between the potency of NBI and DPR in inhibiting [3H]adenosine accumulation were also noted. DPR was more potent in inhibiting [3H]adenosine accumulation in guinea pig cerebellar synaptoneurosomes than in cerebral cortex synaptoneurosomes. In rat synaptoneurosomes, the reverse selectivity was observed. DPR was also 2–6 fold (depending on brain region of comparison) more potent in inhibiting adenosine accumulation in guinea pig synaptoneurosomes than in inhibiting such accumulation in rat synaptoneurosomes. In contrast, NBI was approximately equipotent in inhibiting adenosine accumulation in rat and guinea pig synaptoneurosomes. Additional binding studies using [3H]NBI are also reported. The data presented are entirely consistent with the hypotheses that (1) NBI and DPR bind to functionally relevant sites and (2) there are different populations of nucleoside transporters in mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号