首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
目的:2019年以来,人造肉技术受到了社会的广泛关注,各种人造肉制品抢占餐饮市场标志着这项技术可能迎来一个转折点,逐步进入大规模商业化阶段。方法:综述了植物蛋白肉和细胞培养肉两种类型的人造肉在技术层面的发展现状,探讨了人造肉的食用安全性和生物安全性以及监管框架,展望了人造肉的市场和消费者接受度。结果:人造肉是肉类生产领域中的一种新模式和新方向,将减少食品工业对传统农业的依赖性,有助于缓解人类日益增长的营养需求和逐渐恶化的生态环境之间的矛盾。结论:本综述将有助于促进人造肉科学研究的进一步发展,并促进其产品市场在有安全保障的基础上稳步发展。  相似文献   

2.
人造肉作为2018年全球十大突破和新兴科技之一,因其来源可追溯、食品安全性和绿色可持续等优势得到广泛的关注。欧美等国家已经投入大量资源开展细胞培养人造肉研究,未来将对我国的肉制品及食品市场造成一定的冲击。现阶段,细胞培养人造肉生产的挑战在于如何高效模拟动物肌肉组织生长环境,并在生物反应器中实现大规模的生产。尽管动物细胞组织培养技术已经得到深入的研究,并取得了不同程度的成功应用,但由于现有动物细胞组织培养成本与技术要求较高,仍不能实现大规模的产业化培养。因此,对于人造肉的生产来说,开发高效、安全的大规模细胞培养技术是亟需解决的问题,可以有效降低生产成本,实现产业化应用。文中通过介绍基于人造肉生物制造的动物细胞组织培养技术研究现状,具体阐述了目前的挑战和关键技术问题,并初步探讨了其可能的解决策略和应用前景。  相似文献   

3.
受到人口增长过快、社会经济发展水平不平衡、人口老龄化和不健康饮食方式等影响,人类面临着食品和营养缺乏、部分人群中营养相关疾病高发等问题。同时,社会低碳发展的需求呼唤一种可持续的食物供给模式。因此,既能满足消费者口感和营养需求,又是绿色可持续食物供给模式的技术,例如功能糖、人造肉等未来食品技术,受到了广泛的关注。近年,新兴的生物制造技术及产品得到了迅猛发展,将会支撑形成绿色、低碳的未来食品产业,引发传统生产模式的深刻变革,是新兴生物经济的重大战略发展方向。本文聚焦于未来食品——功能糖、微生物蛋白及人造肉等关键辅配料的生物制造技术研究,追踪其在细胞工厂构建、工业环境下菌种测试与过程优化和衍生产品开发等研究的最新进展,展望未来的发展趋势,旨在为微生物制造未来食品的产业发展提供指导。  相似文献   

4.
<正>生物种质资源是国家重大战略性基础资源,是社会、经济和环境可持续发展的物质基础,关系到国家安全和主权。畜禽遗传资源是生物种质资源的重要组成部分,是畜牧业现在和未来持续发展的基石,以畜禽为主的家养动物源源不断地为人类提供必需的肉、蛋、奶、毛、皮等优质产品,在国民经济发展中具有重要的作用。目前,不少地方品种资源在畜牧生产中发挥着重要作用,是培育新品种不可缺少的原始素材,是  相似文献   

5.
生物反应器技术应用于植物细胞培养既可以打破环境条件的限制,又有助于生产过程的人为调控,为植物细胞大规模培养或工厂化直接生产植物细胞有用代谢产物创造了条件,是当前植物细胞培养工作的研究热点。在介绍植物细胞培养特点的基础上,对适用于植物细胞培养的各类生物反应器(搅拌式生物反应器、非搅拌式生物反应器、用于植物细胞固定化培养的生物反应器、光生物反应器以及一次性培养生物反应器)的原理、优缺点等进行比较分析,最后提出了植物细胞培养生物反应器研究的发展方向,以期为植物细胞培养生物反应器的选择及改良提供参考。  相似文献   

6.
生物催化剂研发及生物催化技术的产业化   总被引:1,自引:0,他引:1  
资源危机与环境压力已经成为现代人类社会实现可持续发展的主要瓶颈,着眼于发展环境友好、过程高效的工业生物技术,有望对社会发展产生巨大的引领和带动作用,工业生物技术的发展将成为解决能源、环境和资源问题的关键,而生物催化是工业生物技术的核心技术.本文介绍了生物催化在工业可持续发展中的地位,国内外研究进展及其影响,并对新型生物催化剂的发现与新的催化功能的开发应用实例进行了介绍.  相似文献   

7.
资源匮乏、能源短缺和环境污染日趋恶化等现实问题,已经成为社会可持续发展的巨大障碍。工业生物技术作为生物技术发展的第三次浪潮,是解决目前人类所面临的资源、能源与环境问题的有效途径之一,是工业可持续发展最有希望的技术。本期“中国工业生物技术发展高峰论坛·2008”专刊, 集中展现了我国工业生物技术专家学者在生物炼制和生物基化学品、微生物基因组学和生物信息学、代谢工程与药物研发、现代工业酶技术、生物炼制细胞工厂、生物催化与生物转化、工业生物过程技术以及工业微生物菌种的选育和改良等工业生物技术领域所取得的最新进展。希望通过专刊的出版, 更好地促进我国工业生物技术领域的交流和发展。  相似文献   

8.
资源匮乏、能源短缺和环境污染日趋恶化等现实问题,已经成为社会可持续发展的巨大障碍。工业生物技术作为生物技术发展的第三次浪潮,是解决目前人类所面临的资源、能源与环境问题的有效途径之一,是工业可持续发展最有希望的技术。本期“中国工业生物技术发展高峰论坛·2008”专刊, 集中展现了我国工业生物技术专家学者在生物炼制和生物基化学品、微生物基因组学和生物信息学、代谢工程与药物研发、现代工业酶技术、生物炼制细胞工厂、生物催化与生物转化、工业生物过程技术以及工业微生物菌种的选育和改良等工业生物技术领域所取得的最新进展。希望通过专刊的出版, 更好地促进我国工业生物技术领域的交流和发展。  相似文献   

9.
近年来能源资源短缺.生态环境恶化等一系列问题日渐突出.现代工业化经济进程与化石资源日渐枯竭的现实形成了剧烈冲突.人类社会的可持续发展面临着前所未有的挑战。生物炼制是以可再生生物资源为原料基础生产能源与化工产品的新型工业模式,通过开发新的化学、生物和机械技术.大幅提高可再生生物资源的利用水平.是降低化石资源消耗的一个有效途径。  相似文献   

10.
近年来能源资源短缺.生态环境恶化等一系列问题日渐突出.现代工业化经济进程与化石资源日渐枯竭的现实形成了剧烈冲突.人类社会的可持续发展面临着前所未有的挑战。生物炼制是以可再生生物资源为原料基础生产能源与化工产品的新型工业模式,通过开发新的化学、生物和机械技术.大幅提高可再生生物资源的利用水平.是降低化石资源消耗的一个有效途径。  相似文献   

11.
Sustainability discussions bring in multiple competing goals, and the outcomes are often conflicting depending upon which goal is being given credence. The role of livestock in supporting human well-being is especially contentious in discourses around sustainable diets. There is considerable variation in which environmental metrics are measured when describing sustainable diets, although some estimate of the greenhouse gas (GHG) emissions of different diets based on varying assumptions is commonplace. A market for animal-free and manufactured food items to substitute for animal source food (ASF) has emerged, driven by the high GHG emissions of ASF. Ingredients sourced from plants, and animal cells grown in culture are two approaches employed to produce alternative meats. These can be complemented with ingredients produced using synthetic biology. Alternative meat companies promise to reduce GHG, the land and water used for food production, and reduce or eliminate animal agriculture. Some CEOs have even claimed alternative meats will ‘end world hunger’. Rarely do such self-proclamations emanate from scientists, but rather from companies in their efforts to attract venture capital investment and market share. Such declarations are reminiscent of the early days of the biotechnology industry. At that time, special interest groups employed fear-based tactics to effectively turn public opinion against the use of genetic engineering to introduce sustainability traits, like disease resistance and nutrient fortification, into global genetic improvement programs. These same groups have recently turned their sights on the ‘unnaturalness’ and use of synthetic biology in the production of meat alternatives, leaving agriculturists in a quandary. Much of the rationale behind alternative meats invokes a simplistic narrative, with a primary focus on GHG emissions, ignoring the nutritional attributes and dietary importance of ASF, and livelihoods that are supported by grazing ruminant production systems. Diets with low GHG emissions are often described as sustainable, even though the nutritional, social and economic pillars of sustainability are not considered. Nutritionists, geneticists, and veterinarians have been extremely successful at developing new technologies to reduce the environmental footprint of ASF. Further technological developments are going to be requisite to continuously improve the efficiency of animal source, plant source, and cultured meat production. Perhaps there is an opportunity to collectively communicate how innovations are enabling both alternative- and conventional-meat producers to more sustainably meet future demand. This could counteract the possibility that special interest groups who promulgate misinformation, fear and uncertainty, will hinder the adoption of technological innovations to the ultimate detriment of global food security.  相似文献   

12.
Increases in global meat demands cannot be sustainably met with current methods of livestock farming, which has a substantial impact on greenhouse gas emissions, land use, water consumption, and farm animal welfare. Cultivated meat is a rapidly advancing technology that produces meat products by proliferating and differentiating animal stem cells in large bioreactors, avoiding conventional live-animal farming. While many companies are working in this area, there is a lack of existing infrastructure and experience at commercial scale, resulting in many technical bottlenecks such as scale-up of cell culture and media availability and costs. In this study, we evaluate theoretical cultivated beef production facilities with the goal of envisioning an industry with multiple facilities to produce in total 100,000,000 kg of cultured beef per year or ~0.14% of the annual global beef production. Using the computer-aided process design software, SuperPro Designer®, facilities are modeled to create a comprehensive analysis to highlight improvements that can lower the cost of such a production system and allow cultivated meat products to be competitive. Three facility scenarios are presented with different sized production reactors; ~42,000 L stirred tank bioreactor (STR) with a base case cost of goods sold (COGS) of $35/kg, ~211,000 L STR with a COGS of $25/kg, and ~262,000 L airlift reactor (ALR) with a COGS of $17/kg. This study outlines how advances in scaled up bioreactors, alternative bioreactor designs, and decreased media costs are necessary for commercialization of cultured meat products.  相似文献   

13.
Cultured meat is an emerging technology that could address environmental, health, and animal welfare concerns associated with meat production. Development of cultured meat represents an exciting challenge for cell biologists and engineers, but it requires effective, open approaches for knowledge sharing to establish a fertile scientific field alongside a competitive industry.  相似文献   

14.
Cell-based meat, also called ‘clean’, lab, synthetic or in vitro meat, has attracted much media interest recently. Consumer demand for cellular meat production derives principally from concerns over environment and animal welfare, while secondary considerations include consumer and public health aspects of animal production, and food security. The present limitations to cellular meat production include the identification of immortal cell lines, availability of cost-effective, bovine-serum-free growth medium for cell proliferation and maturation, scaffold materials for cell growth, scaling up to an industrial level, regulatory and labelling issues and at what stage mixing of myo-, adipo- and even fibrocytes can potentially occur. Consumer perceptions that cell-based meat production will result in improvements to animal welfare and the environment have been challenged, with the outcome needing to wait until the processes used in cell-based meat are close to a commercial reality. Challenges for cell-based meat products include the simulation of nutritional attributes, texture, flavour and mouthfeel of animal-derived meat products. There is some question over whether consumers will accept the technology, but likely there will be acceptance of cell-based meat products, in particular market segments. Currently, the cost of growth media, industry scale-up of specific components of the cell culture process, intellectual property sharing issues and regulatory hurdles mean that it will likely require an extended period for cellular meat to be consistently available in high-end restaurants and even longer to be available for the mass market. The progress in plant-based meat analogues is already well achieved, with products such as the ImpossibleTM Burger and other products already available. These developments may make the development of cellular meat products obsolete. But the challenges remain of mimicking not only the nutritional attributes, flavour, shape and structure of real meat, but also the changes in regulation and labelling.  相似文献   

15.
Cultured meat is meat produced from stem cell biopsies of cattle. Stem cells were cultured in a bioreactor in the presence of serum to grow the flesh to maturity. Cultured meat technology originated from regenerative medical technology; however, it has been given a new lease of life to produce cultured meat as an innovative food source in the future without involving cattle breeding. This technology can reduce the negative environmental impacts of global warming, water use, soil, and unethical handling of animals. In the excitement of accepting this new technology, the halal status of cultured meat is in question, as it can be produced from embryonic stem cells and myosatellite cells, each of which can be disputed for their halal status. Additionally, the process of culturing and maturation of stem cells involves the use of an impure medium derived from animal blood. Thus, cultured meat is acceptable to Muslims only if the stem cells, medium and scaffold biomaterials used to manufacture it are from Halal sources and shall be in line with the six principles discussed in this study. The discussion is based on Halal and haram animals; Animal slaughtering; Not derived from a source of najs (impurity); Istihalah tammah (perfect substance change); Maslahah (public interest or benefit) and mafsadah (damage); and Darurat (exigency) of cultured meat)).  相似文献   

16.
肉制品是人体中蛋白质和多种微量元素的重要来源,但对于肉制品中肉类的鉴别及品质分析的研究受到了传统方法的限制。近年来,蛋白质组学技术的应用极大地推动了肉类鉴别技术的发展,并对肉质形成的潜在分子机制的研究有着深远的影响。主要介绍了蛋白质组学的概念及其研究策略,全面综述了蛋白质组学技术在肉类鉴别和肉质分析中的应用进展,并展望了其研究前景,以期为肉制品的质量控制及肉质影响因素的研究提供理论依据。  相似文献   

17.
The growing world population, public awareness of animal welfare, environmental impacts and changes in meat consumption leads to the search for novel approaches to food production. Novel foods include products with a new or specifically modified molecular structure, foods made from microorganisms, fungi, algae or insects, as well as from animal cell or tissue cultures. The latter approach is known by various names: “clean meat”, “in vitro meat” and “cell-cultured” or “(cell-)cultivated meat”. Here, cells isolated from agronomically important species are expanded ex vivo to produce cell biomass used in unstructured meat or to grow and differentiate cells on scaffolds to produce structured meat analogues. Despite the fast-growing field and high financial interest from investors and governments, cultivated meat production still faces challenges ranging from cell source choice, affordable expansion, use of cruelty-free and food-grade media, regulatory issues and consumer acceptance. This overview discusses the above challenges and possible solutions and strategies in the production of cultivated meat. The review integrates multifaceted historical, social, and technological insights of the field, and provides both an engaging comprehensive introduction for general interested and a robust perspective for experts.  相似文献   

18.
There is increasing interest in the potential of animal species that do not currently fall within the scope of conventional livestock farming to supplement the production of animal protein for human consumption. This paper provides an overview of the current situation and the conditions the led to it, and offers an analysis of the future of wildlife usage within the general framework of sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号