首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

2.
The DNA duplex d-(CATGGGCCCATG)2 has been studied in solution by FTIR, NMR and CD. The experimental approaches have been complemented by series of large-scale unrestrained molecular dynamics simulation with explicit inclusion of solvent and counterions. Typical proton-proton distances extracted from the NMR spectra and the CD spectra are completely in agreement with slightly modified B-DNA. By molecular dynamics simulation, starting from A-type sugar pucker, a spontaneous repuckering to B-type sugar pucker was observed. Both experimental and theoretical approaches suggest for the dodecamer d-(CATGGGCCCATG)2 under solution conditions puckering of all 2'-deoxyribose residues in the south conformation (mostly C2'-endo) and can exclude significant population of sugars in the north conformation (C3'-endo). NMR, FTIR and CD data are in agreement with a B-form of the dodecamer in solution. Furthermore, the duplex shows a cooperative B-A transition in solution induced by addition of trifluorethanol. This contrasts a recently published crystal structure of the same oligonucleotide found as an intermediate between B- and A-DNA where 23 out of 24 sugar residues were reported to adopt the north (N-type) conformation (C3'-endo) like in A-DNA (Ng, H. L., Kopka, M. L. and Dickerson, R. E., Proc. Natl. Acad. Sci. U S A 97, 2035-2039 (2000)). The simulated structures resemble standard B-DNA. They nevertheless show a moderate shift towards A-type stacking similar to that seen in the crystal, despite the striking difference in sugar puckers between the MD and X-ray structures. This is in agreement with preceding MD reports noticing special stacking features of G-tracts exhibiting a tendency towards the A-type stacking supported by the CD spectra also reflecting the G-tract stacking. MD simulations reveal several noticeable local conformational variations, such as redistribution of helical twist and base pair roll between the central GpC steps and the adjacent G-tract segments, as well as a substantial helical twist variability in the CpA(TpG) steps combined with a large positive base pair roll. These local variations are rather different from those seen in the crystal.  相似文献   

3.
Cytosine methylation or bromination of the DNA sequence d(GGCGCC)2 is shown here to induce a novel extended and eccentric double helix, which we call E-DNA. Like B-DNA, E-DNA has a long helical rise and bases perpendicular to the helix axis. However, the 3'-endo sugar conformation gives the characteristic deep major groove and shallow minor groove of A-DNA. Also, if allowed to crystallize for a period of time longer than that yielding E-DNA, the methylated sequence forms standard A-DNA, suggesting that E-DNA is a kinetically trapped intermediate in the transition to A-DNA. Thus, the structures presented here chart a crystallographic pathway from B-DNA to A-DNA through the E-DNA intermediate in a single sequence. The E-DNA surface is highly accessible to solvent, with waters in the major groove sitting on exposed faces of the stacked nucleotides. We suggest that the geometry of the waters and the stacked base pairs would promote the spontaneous deamination of 5-methylcytosine in the transition mutation of dm5C-dG to dT-dA base pairs.  相似文献   

4.
Molecular structure of an A-DNA decamer d(ACCGGCCGGT)   总被引:3,自引:0,他引:3  
The molecular structure of the DNA decamer d(ACCGGCCGGT) has been solved and refined by single-crystal X-ray-diffraction analysis at 0.20 nm to a final R-factor of 18.0%. The decamer crystallizes as an A-DNA double helical fragment with unit-cell dimensions of a = b = 3.923 nm and c = 7.80 nm in the space group P6(1)22. The overall conformation of this A-DNA decamer is very similar to that of the fiber model for A-DNA which has a large average base-pair tilt and hence a wide and shallow minor groove. This structure is in contrast to that of several A-DNA octamers in which the molecules all have low base-pair-tilt angles (8-12 degrees) resulting in an appearance intermediate between B-DNA and A-DNA. The average helical parameters of this decamer are typical of A-DNA with 10.9 base pairs/turn of helix, an average helical twist angle of 33.1 degrees, and a base-pair-tilt angle of 18.2 degrees. However, the CpG step in this molecule has a low local-twist angle of 24.5 degrees, similar to that seen in other A-DNA oligomers, and therefore appears to be an intrinsic stacking pattern for this step. The molecules pack in the crystal using a recurring binding motif, namely, the terminal base pair of one helix abuts the surface of the shallow minor groove of another helix. In addition, the GC base pairs have large propeller-twist angles, unlike those found most other A-DNA structures.  相似文献   

5.
The groove widths of DNA helix, especially minor groove width, are generally believed to be important for recognition of DNA by various types of ligands. It has been postulated earlier that large negative propeller twist, in the AT rich regions compresses the minor groove of duplex DNA. A systematic study has now been carried out by generating models with different values of local doublet and intra-basepair parameters and calculating their minor groove widths. It is found that several local doublet parameters affect the minor groove width but it depends most strongly on the local step parameters roll and slide when each parameter is considered individually. However, a detailed analysis of the various local parameters within the B-DNA family of crystal structures indicates that propeller twist and slide are most strongly correlated with the observed values of minor groove width. The groove depth is also strongly correlated with slide. Thus the local base sequence dependent variations in slide can modify both the groove width and depth and consequently determine the ligand binding properties of DNA.  相似文献   

6.
The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G.T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with O2 of T and O6 of G with N3 of T. The X-ray analyses establish that the G.T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G.A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

7.
The molecular structure of the complex between a minor groove binding drug (netropsin) and the DNA dodecamer d(CGCGATATCGCG) has been solved and refined by single-crystal X-ray diffraction analysis to a final R factor of 20.0% to 2.4-A resolution. The crystal is similar to that of the other related dodecamers with unit cell dimensions of a = 25.48 A, b = 41.26 A, and c = 66.88 A in the space group P2(1)2(1)2(1). In the complex, netropsin binds to the central ATAT tetranucleotide segment in the narrow minor groove of the dodecamer B-DNA double helix as expected. However, in the structural refinement the drug is found to fit the electron density in two orientations equally well, suggesting the disordered model. This agrees with the results from solution studies (chemical footprinting and NMR) of the interactions between minor groove binding drugs (e.g., netropsin and distamycin A) and DNA. The stabilizing forces between drug and DNA are provided by a combination of ionic, van der Waals, and hydrogen-bonding interactions. No bifurcated hydrogen bond is found between netropsin and DNA in this complex due to the unique dispositions of the hydrogen-bond acceptors (N3 of adenine and O2 of thymine) on the floor of the DNA minor groove. Two of the four AT base pairs in the ATAT stretch have low propeller twist angles, even though the DNA has a narrow minor groove. Alternating helical twist angles are observed in the ATAT stretch with lower twist in the ApT steps than in the TpA step.  相似文献   

8.
Leveraging structural biology tools, we report the results of experiments seeking to determine if the different mechanical properties of DNA polymers with base analog substitutions can be attributed, at least in part, to induced changes from classical B-form DNA. The underlying hypothesis is that different inherent bending and twisting flexibilities may characterize non-canonical B-DNA, so that it is inappropriate to interpret mechanical changes caused by base analog substitution as resulting simply from ‘electrostatic’ or ‘base stacking’ influences without considering the larger context of altered helical geometry. Circular dichroism spectra of inosine-substituted oligonucleotides and longer base-substituted DNAs in solution indicated non-canonical helical conformations, with the degree of deviation from a standard B-form geometry depending on the number of I?C pairs. X-ray diffraction of a highly inosine-substituted DNA decamer crystal (eight I?C and two A?T pairs) revealed an A-tract-like conformation with a uniformly narrow minor groove, reduced helical rise, and the majority of sugars adopting a C1′-exo (southeastern) conformation. This contrasts with the standard B-DNA geometry with C2′-endo sugar puckers (south conformation). In contrast, the crystal structure of a decamer with only four I?C pairs has a geometry similar to that of the reference duplex with eight G?C and two A?T pairs. The unique crystal geometry of the inosine-rich duplex is noteworthy given its unusual CD signature in solution and the altered mechanical properties of some inosine-containing DNAs.  相似文献   

9.
Abstract

The groove widths of DNA helix, especially minor groove width, are generally believed to be important for recognition of DNA by various types of ligands. It has been postulated earlier that large negative propeller twist, in the AT rich regions compresses the minor groove of duplex DNA A systematic study has now been carried out by generating models with different values of local doublet and intra-basepair parameters and calculating their minor groove widths. It is found that several local doublet parameters affect the minor groove width but it depends most strongly on the local step parameters roll and slide when each parameter is considered individually. However, a detailed analysis of the various local parameters within the B-DNA family of crystal structures indicates that propeller twist and slide are most strongly correlated with the observed values of minor groove width. The groove depth is also strongly correlated with slide. Thus the local base sequence dependent variations in slide can modify both the groove width and depth and consequently determine the ligand binding properties of DNA.  相似文献   

10.
The crystal structure of d(CATGGGCCCATG)2 shows unique stacking patterns of a stable B↔A-DNA intermediate. We evaluated intrinsic base stacking energies in this crystal structure using an ab initio quantum mechanical method. We found that all crystal base pair steps have stacking energies close to their values in the standard and crystal B-DNA geometries. Thus, naturally occurring stacking geometries were essentially isoenergetic while individual base pair steps differed substantially in the balance of intra-strand and inter-strand stacking terms. Also, relative dispersion, electrostatic and polarization contributions to the stability of different base pair steps were very sensitive to base composition and sequence context. A large stacking flexibility is most apparent for the CpA step, while the GpG step is characterized by weak intra-strand stacking. Hydration effects were estimated using the Langevin dipoles solvation model. These calculations showed that an aqueous environment efficiently compensates for electrostatic stacking contributions. Finally, we have carried out explicit solvent molecular dynamics simulation of the d(CATGGGCCCATG)2 duplex in water. Here the DNA conformation did not retain the initial crystal geometry, but moved from the BA intermediate towards the B-DNA structure. The base stacking energy improved in the course of this simulation. Our findings indicate that intrinsic base stacking interactions are not sufficient to stabilize the local conformational variations in crystals.  相似文献   

11.
U Heinemann  C Alings    M Bansal 《The EMBO journal》1992,11(5):1931-1939
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 A and c = 44.59 A. The structure has been determined by X-ray diffraction methods at 2.2 A resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.  相似文献   

12.
The dodecamer d(CGCGAATTCGCG) forms a right-handed B-DNA double helix of a Watson-Crick type both in crystal and solution. It is the first piece of DNA longer than one helix turn whose molecular structure has become known at the atomic resolution. The article reviews qualitative aspects of its structure with a special emphasis on local variations in the disposition of base pairs in the double helix.  相似文献   

13.
The crystal structure of the complex between the dodecamer d(CGCGAATTCGCG) and a synthetic dye molecule Hoechst 33258 was solved by X-ray diffraction analysis and refined to an R-factor of 15.7% at 2.25 A resolution. The crescent-shaped Hoechst compound is found to bind to the central four AATT base pairs in the narrow minor groove of the B-DNA double helix. The piperazine ring of the drug has its flat face almost parallel to the aromatic bisbenzimidazole ring and lies sideways in the minor groove. No evidence of disordered structure of the drug is seen in the complex. The binding of Hoechst to DNA is stabilized by a combination of hydrogen bonding, van der Waals interaction and electrostatic interactions. The binding preference for AT base pairs by the drug is the result of the close contact between the Hoechst molecule and the C2 hydrogen atoms of adenine. The nature of these contacts precludes the binding of the drug to G-C base pairs due to the presence of N2 amino groups of guanines. The present crystal structural information agrees well with the data obtained from chemical footprinting experiments.  相似文献   

14.
UV thermal melting studies, CD and NMR spectroscopies were employed to assess the contribution of antipodal sugar conformations on the stability of the canonical B-DNA conformation of the Dickerson-Drew dodecamer duplex [[d(CGCGAATTCGCG)]2, (ODN 1)]. Different oligodeoxynucleotide versions of ODN 1 were synthesized with modified thymidine units favoring distinct sugar conformations by using a 3'- endo (north) 2'-fluoro-2'-deoxyribofuranosyl thymine (1) or a 2'- endo (south) 2'-fluoro-2'-deoxyarabinofuranosyl thymine (2). The results showed that two south thymidines greatly stabilized the double helix, whereas two north thymidines destabilized it by inducing a more A-like conformation in the middle of the duplex. Use of combinations of north and south thymidine conformers in the same oligo destabilized the double helix even further, but without inducing a conformational change. The critical length for establishing a detectable A-like conformation in the middle of a B-DNA ODN appears to be 4 bp. Our results suggest that manipulation of the conformation of DNA in a sequence-independent manner is possible.  相似文献   

15.
Y G Gao  Y C Liaw  H Robinson  A H Wang 《Biochemistry》1990,29(45):10307-10316
The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m5CGT(pS)Am5CG] have been determined at 1.7- and 1.8-A resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P6(1)) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences.  相似文献   

16.
The crystal structure of the dodecamer, d(CGCIAATTCGCG), has been determined at 2.4 A resolution by molecular replacement, and refined to an R-factor of 0.174. The structure is isomorphous with that of the B-DNA dodecamer, d(CGCGAATTCGCG), in space group P2(1)2(1)2(1) with cell dimensions of a = 24.9, b = 40.4, and c = 66.4 A. The initial difference Fourier maps clearly indicated the presence of inosine instead of guanine. The structure was refined with 44 water molecules, and compared to the parent dodecamer. Overall the two structures are very similar, and the I:C forms Watson-Crick base pairs with similar hydrogen bond geometry to the G:C base pairs. The propeller twist angle is low for I4:C21 and relatively high for the I16:C9 base pair (-3.2 degrees compared to -23.0 degrees), and the buckle angles alter, probably due to differences in the contacts with symmetry related molecules in the crystal lattice. The central base pairs of d(CGCIAATTCGCG) show the large propeller twist angles, and the narrow minor groove that characterize A-tract DNA, although I:C base pairs cannot form the major groove bifurcated hydrogen bonds that are possible for A:T base pairs.  相似文献   

17.
Abstract

The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G·T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with 02 of T and 06 of G with N3 of T. The X-ray analyses establish that the G·T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G·A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

18.
We have analyzed the set of inter and intra base pair parameters for each dinucleotide step in single crystal structures of dodecamers, solved at high and medium resolution and all crystallized in P2(1)2(1)2(1) space group. The objective was to identify whether all the structures which have either the Drew-Dickerson (DD) sequence d[CGCGAATTCGCG] with some base modification or related sequence (non-DD), would display the same sequence dependent structural variability about its palindromic sequence, despite the molecule being bent at one end because of similar crystal lattice packing effect. Most of the local doublet parameters for base pairs steps G2-C3 and G10-C11 positions, symmetrically situated about the lateral two-fold, were significantly correlated between themselves. In non-DD sequences, significant correlations between these positional parameters were absent. The different range of local step parameter values at each sequence position contributed to the gross feature of smooth helix axis bending in all structures. The base pair parameters in some of the positions, for medium resolution DD sequence, were quite unlike the high-resolution set and encompassed a higher range of values. Twist and slide are the two main parameters that show wider conformational range for the middle region of non-DD sequence structures in comparison to DD sequence structures. On the contrary, the minor and major groove features bear good resemblance between DD and non-DD sequence crystal structure datasets. The sugar-phosphate backbone torsion angles are similar in all structures, in sharp contrast to base pair parameter variation for high and low resolution DD and non-DD sequence structures, consisting of unusual (epsilon = g-, xi = t) BII conformation at the 10th position of the dodecamer sequence. Thus examining DD and non-DD sequence structures packed in the same crystal lattice arrangement, we infer that inter and intra base pair parameters are as symmetrically equivalent in its value as the symmetry related step for the palindromic DD sequence about lateral two-fold axis. This feature would lead us to agree with the conclusion that DNA conformation is not substantially affected by end-to-end or lateral inter-molecular interaction due to crystal lattice packing effect. Non-DD sequence structures acquire step parameter values which reflect the altered sequence at each of the dodecamer sequence position in the orthorhombic lattice while showing similar gross features of DD sequence structures.  相似文献   

19.
The twist, rise, slide, shift, tilt and roll between adjoining base pairs in DNA depend on the identity of the bases. The resulting dependence of the double helix conformation on the nucleotide sequence is important for DNA recognition by proteins, packaging and maintenance of genetic material, and other interactions involving DNA. This dependence, however, is obscured by poorly understood variations in the stacking geometry of the same adjoining base pairs within different sequence contexts. In this article, we approach the problem of sequence-dependent DNA conformation by statistical analysis of X-ray and NMR structures of DNA oligomers. We evaluate the corresponding helical coherence length—a cumulative parameter quantifying sequence-dependent deviations from the ideal double helix geometry. We find, e.g. that the solution structure of synthetic oligomers is characterized by 100–200 Å coherence length, which is similar to ~150 Å coherence length of natural, salmon-sperm DNA. Packing of oligomers in crystals dramatically alters their helical coherence. The coherence length increases to 800–1200 Å, consistent with its theoretically predicted role in interactions between DNA at close separations.  相似文献   

20.
Hoechst dye 33258 is a planar drug molecule that binds to the minor groove of DNA, especially where there are a number of A.T base pairs. We have solved the structure of the Hoechst dye bound to the DNA dodecamer d(CGCGATATCGCG) at 2.3 A. This structure is compared to that of the same dodecamer with the minor-groove-binding drug netropsin bound to it, as well as to structures that have been solved for this Hoechst dye bound to a DNA dodecamer containing the central four base pairs with the sequence AATT. We find that the position of the Hoechst drug in this dodecamer is quite different from that found in the other dodecamer since it has an opposite orientation compared to the other two structures. The drug covers three of the four A.T base pairs and extends its piperazine ring to the first G.C base pair adjacent to the alternating AT segment. Furthermore, the drug binding has modified the structure of the DNA dodecamer. Other DNA dodecamers with alternating AT sequences show an alternation in the size of the helical twist between the ApT step (small twist) and the TpA step (large twist). In this structure the alternation is reversed with larger twists in the ApT steps than in the TpA step. In addition, there is a rotation of one of the thymine bases in the DNA dodecamer that is associated with hydrogen bonding to the Hoechst drug. This structure illustrates the considerable plasticity found in the DNA molecule when it binds to different planar molecules inserted into the minor groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号