首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Electron paramagnetic resonance (EPR) spectra were recorded of whole filaments of the cyanobacteria Nostoc muscorum and Anabaena cylindrica. Signals due to manganese were removed by freezing and thawing the cells in EDTA. EPR spectra were assigned on the basis of their g values, linewidths, temperature dependence and response to dithionite and light treatments. The principal components identified were: (i) rhombic Fe3+ (signal at g = 4.3), probably a soluble storage form of iron; (ii) iron-sulfur centers A and B of Photosystem I; (iii) the photochemical electron acceptor ‘X’ of Photosystem I; this component was also observed for the first time in isolated heterocysts; (iv) soluble ferredoxin which was present at a concentration of 1 molecule per 140 ± 20 chlorophyll molecules; (v) a membrane-bound iron-sulfur protein (g = 1.92). A signal g = 6 in the oxidized state was probably due to an unidentified heme compound. During deprivation of iron the rhombic Fe3+, centers A, B and X of Photosystem I, and soluble ferredoxin were all observed to decrease.  相似文献   

2.
Electron paramagnetic resonance and optical spectrophotometric studies have demonstrated that low-molecular dinitrosyl iron complexes (DNICs) with cysteine or glutathione exist in aqueous solutions in the form of paramagnetic mononuclear (М-DNICs) and diamagnetic binuclear complexes (B-DNICs). The latter represent Roussin’s red salt esters and can be prepared by treatment of aqueous solutions of Fe2+ and thiols (рН 7.4) with gaseous nitric oxide (NO) at the thiol:Fe2+ ratio 1:1. М-DNICs are synthesized under identical conditions at the thiol:Fe2+ ratios above 20 and produce an EPR signal with an electronic configuration {Fe(NO)2}7 at gaver. = 2.03. At neutral pH, aqueous solutions contain both M-DNICs and B-DNICs (the content of the latter makes up to 50% of the total DNIC pool). The concentration of B-DNICs decreases with a rise in pH; at рН 9–10, the solutions contain predominantly M-DNICs. The addition of thiol excess to aqueous solutions of B-DNICs synthesized at the thiol:Fe2+ ratio 1:2 results in their conversion into М-DNICs, the total amount of iron incorporated into M-DNICs not exceeding 50% of the total iron pool in B-DNICs. Air bubbling of cys-М-DNIC solutions results in cysteine oxidation-controlled conversion of М-DNICs first into cys-B-DNICs and then into the EPR-silent compound Х able to generate a strong absorption band at 278 nm. In the presence of glutathione or cysteine excess, compound Х is converted into B-DNIC/M-DNIC and is completely decomposed under effect of the Fe2+ chelator о-phenanthroline or N-methyl-d-glucamine dithiocarbamate (MGD). Moreover, MGD initiates the synthesis of paramagnetic mononitrosyl iron complexes with MGD. It is hypothesized that compound Х represents a polynuclear DNIC with cysteine, most probably, an appropriate Roussin’s black salt thioesters and cannot be prepared by simple substitution of М-DNIC cysteine for glutathione. Treatment of М-DNIC with sodium dithionite attenuates the EPR signal at gaver. = 2.03 and stimulates the appearance of an EPR signal at gaver. = 2.0 with a hypothetical electronic configuration {Fe(NO)2}9. These changes can be reversed by storage of DNIC solutions in atmospheric air. The EPR signal at gaver. = 2.0 generated upon treatment of B-DNICs with dithionite also disappears after incubation of B-DNIC solutions in air. In all probability, the center responsible for this EPR signal represents М-DNIC formed in a small amount during dithionite-induced decomposition of B-DNIC.  相似文献   

3.
Soluble ammonia monooxygenase (AMO) from Nitrosomonas europaea was purified to homogeneity and metals in the active sites of the enzyme (Cu, Fe) were analyzed by electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were obtained for a type 2 Cu(II) site with g|| = 2.24, A|| = 18.4 mT and g = 2.057 as well as for heme and non heme iron present in purified soluble AMO from N. europaea. A second type 2 Cu(II) EPR signal with g|| = 2.29, A|| = 16.1 mT and g = 2.03 appeared in the spectrum of the ferricyanide oxidized enzyme and was attributed to oxidation of cuprous sites. Comparison of EPR-detectable Cu2+ with total copper determined by inductively coupled plasma-mass spectrometry (ICP-MS) suggests that there are six paramagnetic Cu2+ and three diamagnetic Cu1+ per heterotrimeric soluble AMO (two paramagnetic and one diamagnetic Cu per αβγ-protomer). A trigonal EPR signal at g = 6.01, caused by a high-spin iron, indicative for cytochrome bound iron, and a rhombic signal at g = 4.31, characteristic of specifically bound Fe3+ was detectable. The binding of nitric oxide in the presence of reductant resulted in a ferrous S = 3/2 signal, characteristic of a ferrous nitrosyl complex. Inactivation of soluble AMO with acetylene did neither diminish the ferrous signal nor the intensity of the Cu2+-EPR signal.  相似文献   

4.
Rubredoxins contain a mononuclear iron tetrahedrally coordinated by four cysteinyl sulfurs. We have studied the wild-type protein from Clostridium pasteurianum and two mutated forms, C9S and C42S, in the oxidized and reduced states, with Mössbauer, integer-spin EPR, and magnetic circular dichroism (MCD) spectroscopies. The Mössbauer spectra of the ferric C42S and C9S mutant forms yielded zero-field splittings, D=1.2?cm?1, that are about 40% smaller than the D-value of the wild-type protein. The 57Fe hyperfine coupling constants were found to be ca. 8% larger than those of the wild-type proteins. The present study also revealed that the ferric wild-type protein has δ=0.24±0.01?mm/s at 4.2?K rather than δ=0.32?mm/s as reported in the literature. The Mössbauer spectra of both dithionite-reduced mutant proteins revealed the presence of two ferrous forms, A and B. These forms have isomer shifts δ=0.79?mm/s at 4.2?K, consistent with tetrahedral Fe2+(Cys)3(O-R) coordination. The zero-field splittings of the two forms differ substantially; we found D=?7±1?cm?1, E/D=0.09 for form A and D=+6.2±1.3?cm?1, E/D=0.15 for form B. Form A exhibits a well-defined integer-spin EPR signal; from studies at X- and Q-band we obtained g z =2.08±0.01, which is the first measured g-value for any ferrous rubredoxin. It is known from X-ray crystallographic studies that ferric C42S rubredoxin is coordinated by a serine oxygen. We achieved 75% reduction of C42S rubredoxin by irradiating an oxidized sample at 77?K with synchrotron X-rays; the radiolytic reduction produced exclusively form A, suggesting that this form represents a serine-bound Fe2+ site. Studies in different buffers in the pH?6–9 range showed that the A:B ratios, but not the spectral parameters of A and B, are buffer dependent, but no systematic variation of the ratio of the two forms with pH was observed. The presence of glycerol (30–50% v/v) was found to favor the B form. Previous absorption and circular dichroism studies of reduced wild-type rubredoxin have suggested d-d bands at 7400, 6000, and 3700?cm?1. Our low-temperature MCD measurements place the two high-energy transitions at ca. 5900 and 6300?cm?1; a third d-d transition, if present, must occur with energy lower than 3300?cm?1. The mutant proteins have d-d transitions at slightly lower energy, namely 5730, 6100?cm?1 in form A and 5350, 6380?cm?1 in form B.  相似文献   

5.
Electron paramagnetic resonance (EPR) signals at g′ = 4.3 are commonly encountered in biological samples owing to mononuclear high-spin (S = 5/2) Fe3+ ions in sites of low symmetry. The present study was undertaken to develop the experimental method and a suitable g′ = 4.3 intensity standard and for accurately quantifying the amount of Fe3+ responsible for such signals. By following the work of Aasa and Vänngård (J. Magn. Reson. 19:308–315, 1975), we present equations relating the EPR intensity of S = 5/2 ions to the intensities of S = 1/2 standards more commonly employed in EPR spectrometry. Of the chelates tested, Fe3+–EDTA (1:3 ratio) in 1:3 glycerol/water (v/v), pH 2, was found to be an excellent standard for frozen-solution S = 5/2 samples at 77 K. The spin concentrations of Cu2+–EDTA and aqua VO2+, both S = 1/2 ions, and of Fe3+–transferrin, an S = 5/2 ion, were measured against this standard and found to agree within 2.2% of their known metal ion concentrations. Relative standard deviations of ±3.6, ±5.3 and ±2.9% in spin concentration were obtained for the three samples, respectively. The spin concentration determined for Fe3+–desferrioxamine of known Fe3+ concentration was anomalously low suggesting the presence of EPR-silent multimeric iron species in solution.  相似文献   

6.
An air-stable formate dehydrogenase, an enzyme that catalyzes the oxidation of formate to CO2, was purified from a sulfate-reducing organism, Desulfovibrio desulfuricans ATCC 27774. The enzyme has a molecular mass of approximately 150?kDa (three different subunits: 88, 29 and 16?kDa) and contains three types of redox-active centers: four c-type hemes, nonheme iron arranged as two [4Fe-4S]2+/1+ centers and a molybdenum-pterin site. Selenium was also chemically detected. The enzyme specific activity is 78 units per mg of protein. Mo(V) EPR signals were observed in the native, reduced and formate-reacted states. EPR signals related to the presence of multiple low-spin hemes were also observed in the oxidized state. Upon reduction, an examination of the EPR data under appropriate conditions distinguishes two types of iron-sulfur centers, an [Fe-S] center I (g max=2.050, g med=1.947, g min=1.896) and an [Fe-S] center II (g max=2.071, g med=1.926, g min=1.865). Mössbauer spectroscopy confirmed the presence of four hemes in the low-spin state. The presence of two [4Fe-4S]2+/1+ centers was confirmed, one of these displaying very small hyperfine coupling constants in the +1 oxidation state. The midpoint redox potentials of the enzyme metal centers were also estimated.  相似文献   

7.
4 S4]3 +  and the reduced [Fe4S4]2 +  clusters in the high-potential iron protein I from Ectothiorhodospira halophila were measured in a temperature range from 5 K to 240 K. EPR measurements and 57Fe electron-nuclear double resonance (ENDOR) experiments were carried out with the oxidized protein. In the oxidized state the cluster has a net spin S = 1/2 and is paramagnetic. As common in [Fe4S4]3 +  clusters, the M?ssbauer spectrum was simulated with two species contributing equally to the absorption area: two Fe3 +  atoms couple to the “ferric-ferric” pair, and one Fe2 +  and one Fe3 +  atom give the “ferric-ferrous pair”. For the simulation of the M?ssbauer spectrum, g-values were taken from EPR measurements. A-tensor components were determined by 57Fe ENDOR experiments that turned out to be a necessary source of estimating parameters independently. In order to obtain a detailed agreement of M?ssbauer and ENDOR data, electronic relaxation has to be taken into account. Relaxing the symmetry condition in a way that the electric field gradient tensor does not coincide with g- and A-tensors yielded an even better agreement of experimental and theoretical M?ssbauer spectra. Spin-spin and spin-lattice relaxation times were estimated by pulsed EPR; the former turned out to be the dominating mechanism at T = 5 K. Relaxation times measured by pulsed EPR and obtained from the M?ssbauer fit were compared and yield nearly identical values. The reduced cluster has one additional electron and has a diamagnetic (S = 0) ground state. All the four irons are indistinguishable in the M?ssbauer spectrum, indicating a mixed-valence state of Fe2.5 +  for each. Received: 15 February 1999 / Accepted: 31 August 1999  相似文献   

8.
Han Bao  Keisuke Kawakami  Jian-Ren Shen 《BBA》2008,1777(9):1109-1115
In intact PSII, both the secondary electron donor (TyrZ) and side-path electron donors (Car/ChlZ/Cytb559) can be oxidized by P680+ at cryogenic temperatures. In this paper, the effects of acceptor side, especially the redox state of the non-heme iron, on the donor side electron transfer induced by visible light at cryogenic temperatures were studied by EPR spectroscopy. We found that the formation and decay of the S1TyrZ EPR signal were independent of the treatment of K3Fe(CN)6, whereas formation and decay of the Car+/ChlZ+ EPR signal correlated with the reduction and recovery of the Fe3+ EPR signal of the non-heme iron in K3Fe(CN)6 pre-treated PSII, respectively. Based on the observed correlation between Car/ChlZ oxidation and Fe3+ reduction, the oxidation of non-heme iron by K3Fe(CN)6 at 0 °C was quantified, which showed that around 50-60% fractions of the reaction centers gave rise to the Fe3+ EPR signal. In addition, we found that the presence of phenyl-p-benzoquinone significantly enhanced the yield of TyrZ oxidation. These results indicate that the electron transfer at the donor side can be significantly modified by changes at the acceptor side, and indicate that two types of reaction centers are present in intact PSII, namely, one contains unoxidizable non-heme iron and another one contains oxidizable non-heme iron. TyrZ oxidation and side-path reaction occur separately in these two types of reaction centers, instead of competition with each other in the same reaction centers. In addition, our results show that the non-heme iron has different properties in active and inactive PSII. The oxidation of non-heme iron by K3Fe(CN)6 takes place only in inactive PSII, which implies that the Fe3+ state is probably not the intermediate species for the turnover of quinone reduction.  相似文献   

9.
1. The Mössbauer spectra of Scenedesmus ferredoxin enriched in 57Fe were measured and found to be identical with those of two other plant-type ferredoxins (from spinach and Euglena) that had been previously measured. Better resolved Mössbauer spectra of spinach ferredoxin are also reported from protein enriched in 57Fe. All these iron–sulphur proteins are known to contain two iron atoms in a molecule that takes up one electron on reduction. 2. The Mössbauer spectra at 195°K have electric hyperfine structure only and show that on reduction the electron goes to one of the iron atoms, the other appearing to remain unchanged. 3. In the oxidized state, both iron atoms are in a similar chemical state, which appears from the chemical shift and quadrupole splitting to be high-spin Fe3+, but they are in slightly different environments. In the reduced state the iron atoms are different and the molecule appears to contain one high-spin Fe2+ and one high-spin Fe3+ atom. 4. At lower temperatures (77 and 4.2°K) the spectra of both iron atoms in the reduced proteins show magnetic hyperfine structure which suggests that the iron in the oxidized state also has unpaired electrons. This provides experimental evidence for earlier suggestions that in the oxidized state there is antiferromagnetic exchange coupling, which would result in a low value for the magnetic susceptibility. 5. In a small magnetic field the spectrum of the reduced ferredoxin shows a Zeeman splitting with hyperfine field (Hn) of 180kG at the nuclei. On application of a strong magnetic field H the spectrum splits into two spectra with effective fields Hn±H, thus confirming the presence of the two antiferromagnetically coupled iron atoms. 6. These results are in agreement with the model proposed by Gibson, Hall, Thornley & Whatley (1966); in the oxidized state there are two Fe3+ atoms (high spin) antiferromagnetically coupled and on reduction of the ferredoxin by one electron one of the ferric atoms becomes Fe2+ (high spin).  相似文献   

10.
In the present work the interactions of nucleic acid bases with and adsorption on clays were studied at two pHs (2.00, 7.00) using different techniques. As shown by Mössbauer and EPR spectroscopies and X-ray diffractometry, the most important finding of this work is that nucleic acid bases penetrate into the interlayer of the clays and oxidize Fe2+ to Fe3+, thus, this interaction cannot be regarded as a simple physical adsorption. For the two pHs the order of the adsorption of nucleic acid bases on the clays was: adenine????cytosine?>?thymine?>?uracil. The adsorption of adenine and cytosine on clays increased with decreasing of the pH. For unaltered montmorillonite this result could be explained by electrostatic forces between adenine/cytosine positively charged and clay negatively charged. However for montmorillonite modified with Na2S, probably van der Waals forces also play an important role since both adenine/cytosine and clay were positively charged. FT-IR spectra showed that the interaction between nucleic acid bases and clays was through NH+ or NH 2 + groups. X-ray diffractograms showed that nucleic acid bases adsorbed on clays were distributed into the interlayer surface, edge sites and external surface functional groups (aluminol, silanol) EPR spectra showed that the intensity of the line g????2 increased probably because the oxidation of Fe2+ to Fe3+ by nucleic acid bases and intensity of the line g?=?4.1 increased due to the interaction of Fe3+ with nucleic acid bases. Mössbauer spectra showed a large decreased on the Fe2+ doublet area of the clays due to the reaction of nucleic acid bases with Fe2+.  相似文献   

11.
The involvement of ferric reduction in the iron uptake mechanism of iron-stressed Chlorella vulgaris from ferrioxamine B was investigated. Some comparative data for ferric-citrate was also obtained. EPR and a spectrophotometric assay were used to measure Fe3+ reduction. These two methods differed in the absolute quantity but not in effectors of ferric reduction. The mechanism governing ferric reduction was investigated by use of respiratory inhibitors, uncouplers, alternative electron acceptors, and ATPase inhibitors. Reduction appears to play a role in iron uptake from both Fe3+-deferrioxamine B and Fe3+-citrate; however, the involvement of photoreduction in Fe3+-citrate uptake implies multiple reductive mechanisms could be involved.  相似文献   

12.
1. The previous Mössbauer work on Chromatium high-potential iron–sulphur protein by Moss et al. (1968) and Evans et al. (1970) was extended to high applied magnetic fields. 2. Measurements of the reduced protein confirm that it is non-magnetic. 3. Spectra of the oxidized protein in applied magnetic fields clearly indicate that some iron atoms have a positive hyperfine field, which is evidence for antiferromagnetic coupling. 4. The spectra can be interpreted in terms of two types of iron atom with positive and negative hyperfine fields of 9 and 12T respectively. 5. A consideration of the chemical shifts and other evidence suggests formal valences of two Fe3+ and two Fe2+ atoms in the non-magnetic reduced state, and three Fe3+ atoms and one Fe2+ atom in the oxidized state. 6. However, no separate Fe3+ and Fe2+ spectra are seen, suggesting that the d electrons are not localized on particular iron atoms.  相似文献   

13.
Electron paramagnetic resonance (EPR) spectroscopy of the iron-semiquinone complex in photosynthetic bacterial cells and chromatophores of Rhodopseudomonas viridis is reported. Magnetic fields are used to orient the prolate ellipsoidal-shaped cells which possess a highly ordered internal structure, consisting of concentric, nearly cylindrical membranes. The field-oriented suspension of cells exhibits a highly dichroic EPR signal for the iron-semiquinone complex, showing that the iron possesses a low-symmetry ligand field and exists in a preferred orientation within the native reaction-center membrane complex. The EPR spectrum is analyzed utilizing a spin hamiltonian formalism to extract physical information describing the electronic structure of the iron and the nature of its interaction with the semiquinones. Exact numerical solutions and analytical expressions for the transition frequencies and intensities derived from a perturbation theory expansion are presented, and a computer-simulated spectrum is given. It has been found that, for a model which assumes no preferred orientation within the plane of the membranes, the orientation of the Fe2+ ligand axis of largest zero-field splitting (Z, the principal magnetic axis) is titled 64±6° from the membrane normal. The ligand field for Fe2+ has low symmetry, with zero-field splitting parameters of |D1|=7.0±1.3 cm?1 and |E1|=1.7±0.5 cm?1 and |E1D1|=0.26 for the redox state Q1?Fe2+Q2?. The rhombic character of the ligand field is increased in the redox state Q1Fe2+Q?2, where 0.33>|E2D2|>0.26. This indicates that the redox state of the quinones can influence the ligand field symmetry and splitting of the Fe2+. There exists an electron-spin exchange interaction between Fe2+ and Q?1 and Q?2, having magnitudes |J1|=0.12±0.03 cm?1 and |J2|?0.06 cm?1, respectively. Such weak interactions indicate that a proper electronic picture of the complex is as a pair of immobilized semiquinone radicals having very little orbital overlap (probably fostered by superexchange) with the Fe2+ orbitals. The exchange interaction is analyzed by comparison with model systems of paramagnetic metals and free radicals to indicate an absence of direct coordination between Fe2+ and Q?1 and Q?2. Selective line-broadening of some of the EPR transitions, involving Q? coupling to the magnetic sublevels of the Fe2+ ground state, is interpreted as arising from an electron-electron dipolar interaction. Analysis of this line-broadening indicates a distance of 6.2–7.8 ? between Fe2+ and Q?1, thus placing Q1 outside the immediate coordination shell of Fe2+.  相似文献   

14.
Mitochondria from respiring cells were isolated under anaerobic conditions. Microscopic images were largely devoid of contaminants, and samples consumed O2 in an NADH-dependent manner. Protein and metal concentrations of packed mitochondria were determined, as was the percentage of external void volume. Samples were similarly packed into electron paramagnetic resonance tubes, either in the as-isolated state or after exposure to various reagents. Analyses revealed two signals originating from species that could be removed by chelation, including rhombic Fe3+ (g = 4.3) and aqueous Mn2+ ions (g = 2.00 with Mn-based hyperfine). Three S = 5/2 signals from Fe3+ hemes were observed, probably arising from cytochrome c peroxidase and the a3:Cub site of cytochrome c oxidase. Three Fe/S-based signals were observed, with averaged g values of 1.94, 1.90 and 2.01. These probably arise, respectively, from the [Fe2S2]+ cluster of succinate dehydrogenase, the [Fe2S2]+ cluster of the Rieske protein of cytochrome bc 1, and the [Fe3S4]+ cluster of aconitase, homoaconitase or succinate dehydrogenase. Also observed was a low-intensity isotropic g = 2.00 signal arising from organic-based radicals, and a broad signal with g ave = 2.02. Mössbauer spectra of intact mitochondria were dominated by signals from Fe4S4 clusters (60–85% of Fe). The major feature in as-isolated samples, and in samples treated with ethylenebis(oxyethylenenitrilo)tetraacetic acid, dithionite or O2, was a quadrupole doublet with ΔE Q = 1.15 mm/s and δ = 0.45 mm/s, assigned to [Fe4S4]2+ clusters. Substantial high-spin non-heme Fe2+ (up to 20%) and Fe3+ (up to 15%) species were observed. The distribution of Fe was qualitatively similar to that suggested by the mitochondrial proteome.  相似文献   

15.
16.
17.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

18.
The presence of a water ligand on heme-iron in ferric hemoproteins can, in suitable cases, be detected by observing 17O superhyperfine interaction in the EPR spectra of solutions in H217O. Although no significant superhyperfine interaction is detectable in the EPR spectra of horseradish peroxidase itself, benzo-hydroxamic acid, which forms an outersphere complex with the enzyme analogous to an enzyme-peracid transition state, stabilizes an innersphere water ligand on the heme, as indicated by a ~1.3 gauss Fe3+-17O superhyperfine interaction in the EPR signal at g = 2, in the presence of 34–39% H217O at 8°K. These results indicate that the predominantly pentacoordinate Fe3+ ion in horseradish peroxidase is accessible to the solvent and that it acquires a water or hydroxyl ligand in the presence of benzohydroxamic acid.  相似文献   

19.
Recoil-free measurements were carried out on a 2 Fe-ferredoxin, which was isolated and purified from an extreme halophile, Halobacterium of the Dead Sea. The spectrum of this ferredoxin in the oxidized state at 82 K is a superposition of two quadrupole doublets, representing two non-equivalent Fe3+ sites of equal intensity. The spectrum of the reduced ferredoxin is consistent with the presence of two pure classes of iron atoms, ferric (lower isomer shift) and ferrous (higher isomer shift). Interpretations of the recoil-free spectra are discussed. Mössbauer measurements were also carried out on frozen whole bacterial cells and the resulting spectrum was found to be quite different from that observed in the isolated ferredoxin. Tentative conclusions are reached concerning the localization of this ferredoxin in the cytosol of the Halobacteria.The EPR spectrum of the reduced ferredoxin obtained at 24 K exhibits rhombic symmetry with the following g values: 1.894, 1.984 and 2.07. These values are similar to those obtained with 2 Fe-ferredoxins of the plant type, except that the g y and g z values are somewhat higher. Both from the EPR and Mössbauer data, it is deduced that the spin relaxation times in reduced halophilic ferredoxins are faster than in the reduced plant ferredoxins.  相似文献   

20.
Electron paramagnetic resonance (epr) studies demonstrate that at low levels of conalbumin (CA) saturation with Fe3+ or VO2+, a ph-dependent preference of the metal exists for different protein binding-site configurations,A, B, and C. The vanadyl ion epr spectra of mixed VO2+, Fe3+-conalbumin in which Fe3+ is preferentially bound to the N- or C-terminal binding site are consistent with all three configurations being formed at both metal sites. At high pH the spectra suggest interaction between binding sites. In the absence of HCO3?, VO2+ is bound almost exclusively in B configuration; a full binding capacity of 2 VO2+ per CA is retained. Stoichiometric amounts of HCO3? convert the epr spectrum from B to an A, B, C type. Addition of oxalate to bicarbonate-free preparations converts the B spectrum to an A′, B, C′ type where the B resonances have lost intensity to the A′ and C′ resonances but have not changed position. The data suggest that configuration B is anion independent and that only one equivalent of binding sites at pH 9 responds to the presence of HCO31? or oxalate by changing configuration but not metal binding capability. The form of the bound anion may be HCO3? rather than CO32?. The formation rate of the colored ferric conalbumin complex by oxidizing Fe2+ to Fe3+ in limited HCO3? at pH 9 is also consistent with one equivalent of sites having different anion requirements than the remaining sites. Increased NaCl or NaClO4 concentration or substitution of D2O for water as solvent affect the environment of bound VO2+, but the mechanisms of action are unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号