首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
J S Zigler  P V Rao 《FASEB journal》1991,5(2):223-225
Taxon-specific crystallins are proteins present in high abundance in the lens of phylogenetically restricted groups of animals. Recently it has been found that these proteins are actually enzymes which the lens has apparently adopted to serve as structural proteins. Most of these proteins have been shown to be identical to, or related to, oxidoreductases. In guinea pig lens, which contains zeta-crystallin, a protein with an NADPH-dependent oxidoreductase activity, the levels of both NADPH and NADP+ are extremely high and correlate with the concentration of zeta-crystallin. We report here nucleotide assays on lenses from vertebrates containing other enzyme/crystallins. In each case where the enzyme/crystallin is a pyridine nucleotide-binding protein the level of that particular nucleotide is extremely high in the lens. The presence of an enzyme/crystallin does not affect the lenticular concentrations of those nucleotides which are not specifically bound. The possibility that nucleotide binding may be a factor in the selection of some enzymes to serve as enzyme/crystallins is considered.  相似文献   

2.
The camera eye lens of vertebrates is a classic example of the re‐engineering of existing protein components to fashion a new device. The bulk of the lens is formed from proteins belonging to two superfamilies, the α ‐crystallins and the β γ ‐crystallins. Tracing their ancestry may throw light on the origin of the optics of the lens. The α ‐crystallins belong to the ubiquitous small heat shock proteins family that plays a protective role in cellular homeostasis. They form enormous polydisperse oligomers that challenge modern biophysical methods to uncover the molecular basis of their assembly structure and chaperone‐like protein binding function. It is argued that a molecular phenotype of a dynamic assembly suits a chaperone function as well as a structural role in the eye lens where the constraint of preventing protein condensation is paramount. The main cellular partners of α ‐crystallins, the β ‐ and γ ‐crystallins, have largely been lost from the animal kingdom but the superfamily is hugely expanded in the vertebrate eye lens. Their structures show how a simple Greek key motif can evolve rapidly to form a complex array of monomers and oligomers. Apart from remaining transparent, a major role of the partnership of α ‐crystallins with β ‐ and γ ‐crystallins in the lens is to form a refractive index gradient. Here, we show some of the structural and genetic features of these two protein superfamilies that enable the rapid creation of different assembly states, to match the rapidly changing optical needs among the various vertebrates.  相似文献   

3.
Over 95% of the dry mass of the eye lens consists of specialized proteins called crystallins. Aged lenses are subject to cataract formation, in which damage, cross-linking, and precipitation of crystallins contribute to a loss of lens clarity. Cataract is one of the major causes of blindness, and it is estimated that over 50,000,000 people suffer from this disability. Damage to lens crystallins appears to be largely attributable to the effects of UV radiation and/or various active oxygen species (oxygen radicals, 1O2, H2O2, etc.). Photooxidative damage to lens crystallins is normally retarded by a series of antioxidant enzymes and compounds. Crystallins which experience mild oxidative damage are rapidly degraded by a system of lenticular proteases. However, extensive oxidation and cross-linking severely decrease proteolytic susceptibility of lens crystallins. Thus, in the young lens the combination of antioxidants and proteases serves to prevent crystallin damage and precipitation in cataract formation. The aged lens, however, exhibits diminished antioxidant capacity and decreased proteolytic capabilities. The loss of proteolytic activity may actually be partially attributable to oxidative damage which proteases (like any other protein)_can sustain. We propose that the rate of crystallin damage increases as antioxidant capacity declines with age. The lower protease activity of aged lens cells may be insufficient to cope with such rates of crystallin damage, and denatured crystallins may begin to accumulate. As the concentration of oxidatively denatured crystallins rises, cross-linking reactions may produce insoluble aggregates which are refractive to protease digestion. Such a scheme could explain many events which are known to contribute to cataract formation, as well as several which have appeared to be unrelated. This hypothesis is also open to experimental verification and intervention.  相似文献   

4.
Summary. Ten years after the establishment of the term proteome, the science surrounding it has yet to fulfill its potential. While a host of technologies have generated lists of protein names, there are only a few reported studies that have examined the individual proteins at the covalent chemical level defined as protein species in 1997 and their function. In the current study, we demonstrate that this is possible with two-dimensional gel electrophoresis (2-DE) and mass spectrometry by presenting clear evidence of in vivo N-terminal alpha A crystallin truncation and relating this newly detected protein species to alpha crystallin activity regulation by protease cleavage in the healthy young murine lens. We assess the present state of technology and suggest a shift in resources and paradigm for the routine attainment of the protein species level in proteomics.  相似文献   

5.
Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.  相似文献   

6.
Many of the structural proteins of ocular lenses, commonly referred to as crystallins, are identical to specific enzymes or the result of a recent gene duplication (Piatigorsky, J., and Wistow, G. (1991) Science 252, 1078-1079). One such enzyme, aldehyde dehydrogenase (ALDH), has been recruited as a lens crystallin in certain mammals (Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) and cephalopods (Tomarev, S., Zinovieva, R., and Piatigorsky, J. (1991) J. Biol. Chem. 266, 24226-24231). We report here that a transparent tissue, derived from muscle but functioning as a lens in the light-emitting organ of a squid, Euprymna scolopes, shows striking biochemical convergence with the epidermally derived ocular lenses of some mammals and cephalopods. In the light organ lens of E. scolopes, an ALDH-like protein is the predominant molecular component. The typical muscle-specific proteins are replaced as the dominant species by a protein composed of 54-kDa subunits. This protein, which we designate as L-crystallin, constitutes approximately 70% of the total soluble protein of the light organ lens. The amino acid sequences of three peptides of L-crystallin (approximately 9% of the total protein) showed 54.5% sequence identity with human cytosolic ALDH. Using polyclonal antiserum made against L-crystallin, we found that it is present in low abundance in other tissues of the squid, including muscle and the ocular lens. This polyclonal antiserum also cross-reacted with the ALDH-like crystallins found in the ocular lenses of certain mammals and cephalopods. L-Crystallin showed no ALDH activity, which is similar to several other enzyme/crystallins, including ALDH/eta-crystallin (Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269). The characteristics of this muscle-derived lens are evidence that a common biochemical basis underlies transparency and that certain proteins may possess properties that promote their selection as lens structural proteins.  相似文献   

7.
1. The ability of cell-free preparations from bovine lens to degrade fragments of alpha-crystallin has been studied. Crystallin fragments, produced by either chemical cleavage with cyanogen bromide or prolonged treatment with H2O2 and Cu2+ to produce hydroxyl radicals, were labelled with 125I and incubated with preparations obtained from lenses from animals of different age. 2. Results showed that the ability of the preparations obtained from the lens cores (the innermost part of the lens composed of enucleated non-dividing cells incapable of protein synthesis) to degrade crystallin fragments decreased with animal age. No such age-related correlation was obtained with preparations obtained from the cortex (the outer region of the lens surrounding the core). 3. The effect of incubation of the various lenticular preparations with H2O2 and Cu2+ on subsequent ability to catabolise crystallin fragments was also examined. Preparations from the oldest lenses were found to be the least resistant to free-radical attack. 4. The relative susceptibility of the crystallins and non-lenticular proteins to H2O2/Cu(2+)-mediated free-radical attack was examined. Not only were the various crystallins (alpha, beta and gamma) far more resistant to cleavage under these conditions, they also protected the non-lenticular proteins from free-radical-mediated attack. The comparative resistance of the crystallins to attack and their ability to protect other proteins appeared to be dependent on their structural integrity as prior denaturation with acid and/or cleavage with cyanogen bromide eliminated these properties. 5. It is suggested that crystallins (which show sequence homology to some heat-shock proteins) possess homeostatic functions which could protect other proteins (e.g. proteases) from certain forms of free-radical-mediated damage; crystallins may therefore be important in ageing in general where aberrant polypeptides accumulate.  相似文献   

8.
Keenan J  Manning G  Elia G  Dunn MJ  Orr DF  Pierscionek BK 《Proteomics》2012,12(11):1830-1843
The eye lens remains transparent because of soluble lens proteins known as crystallins. For years γ-crystallins have been known as the main lens proteins in lower vertebrates such as fish and amphibians. The unique growth features of the lens render it an ideal structure to study ageing; few studies have examined such changes in anuran lenses. This study aimed to investigate protein distribution patterns in Litoria infrafrenata and Phyllomedusa sauvagei species. Lenses were fractionated into concentric layers by controlled dissolution. Water-soluble proteins were separated into high (HMW), middle (MMW) and low molecular weight (LMW) fractions by size-exclusion HPLC and constituents of each protein class revealed by 1DE and 2DE. Spots were selected from 2DE gels on the basis of known ranges of subunit molecular weights and pH ranges and were identified by MALDI-TOF/TOF MS following trypsin digestion. Comparable lens distribution patterns were found for each species studied. Common crystallins were detected in both species; the most prominent of these was γ-crystallin. Towards the lens centre, there was a decrease in α- and β-crystallin proportions and an increase in γ-crystallins. Subunits representing taxon-specific crystallins demonstrating strong sequence homology with ζ-crystallin/quinone oxidoreductase were found in both L. infrafrenata and P. sauvagei lenses. Further work is needed to determine which amphibians have taxon-specific crystallins, their evolutionary origins, and their function.  相似文献   

9.
Taxon specific lens crystallins in vertebrates are either similar or identical with various metabolic enzymes. These bifunctional crystallins serve as structural protein in lens along with their catalytic role. In the present study, we have partially purified and characterized lens crystallin from Indian spiny-tailed lizard (Uromastyx hardwickii). We have found lactate dehydrogenase (LDH) activity in lens indicating presence of an enzyme crystallin with dual functions. Taxon specific lens crystallins are product of gene sharing or gene duplication phenomenon where a pre-existing enzyme is recruited as lens crystallin in addition to structural role. In lens, same gene adopts refractive role in lens without modification or loss of pre-existing function during gene sharing phenomenon. Apart from conventional role of structural protein, LDH activity containing crystallin in U. hardwickii lens is likely to have adaptive characteristics to offer protection against toxic effects of oxidative stress and ultraviolet light, hence justifying its recruitment. Taxon specific crystallins may serve as good models to understand structure–function relationship of these proteins.  相似文献   

10.
The high level of dehydroascorbic acid (DHA) in the lenticular tissue is an important risk factor for the development of age-related cataracts. In this study, the effects of DHA on structure and function of lens crystallins were studied in the presence of carnosine using gel mobility shift assay, different spectroscopic techniques, and lens culture analysis. The DHA-induced unfolding and aggregation of lens proteins were largely prevented by this endogenous dipeptide. The ability of carnosine to preserve native protein structure upon exposure to DHA suggests the essential role of this dipeptide in prevention of the senile cataract development. Although the DHA-modified α-crystallin was characterized by altered chaperone activity, functionality of this protein was significantly restored in the presence of carnosine. The increased proteolytic instability of DHA-modified lens proteins was also attenuated in the presence of carnosine. Furthermore, the assessment of lens culture suggested that DHA can induce significant lens opacity which can be prevented by carnosine. These observations can be explained by the pleiotropic functions of this endogenous and pharmaceutical compound, notably by its anti-glycation and anti-aggregation properties. In summary, our study suggests that carnosine may have therapeutic potential in preventing senile cataracts linked with the increased lenticular DHA generation, particularly under pathological conditions associated with the oxidative stress.  相似文献   

11.
1. The four crystallins of the gray squirrel lens have been characterized using gel filtration chromatography, polyacrylamide gel electrophoresis, and immunoblotting. Alpha, beta-heavy, beta-light, and gamma crystallins of squirrel lenses have been identified immunologically, and they cross-react strongly with rabbit polyclonal antibodies. The gamma-24 crystallin of the squirrel lens also reacts strongly with monoclonal anti-human lens gamma-24, as shown by its inhibition of the ELISA reaction by 85%. 2. The water-insoluble urea soluble proteins represent non-covalently associated species of soluble crystallins and the lens cytoskeletal proteins. The membrane intrinsic protein in the urea insoluble pellet has a mol. wt of 27,000 but other lower and higher mol. wt components are also present, which were removed by washing with 0.1 NaOH. The N-terminal 30 amino acid of squirrel lens gamma crystallin was found to be identical to that of the bovine (and human) lens. 3. Measurements of the distribution and state of SH and SS compounds in the squirrel lens have shown greater similarities to those of primates than those of rodents. The findings show that on the basis of both protein and sulfur chemistry the squirrel lens is a representative model for studies of oxidative lens changes in diurnal animals, including man.  相似文献   

12.
Corneal epithelium is known to have high levels of some metabolic enzymes such as aldehyde dehydrogenase in mammals, gelsolin in zebrafish, and alpha-enolase in several species. Analogous to lens crystallins, these enzymes and proteins are referred to as corneal crystallins, although their precise function is not established in any species. Although it is known that after lentectomy, the outer cornea undergoes transdifferentiation to regenerate a lens only in anuran amphibians, major proteins expressed in an anuran cornea have not been identified. This study therefore aimed to identify the major corneal proteins in the Indian toad (Bufo melanostictus) and the Indian frog (Rana tigrina). Soluble proteins of toad and frog corneas were resolved on two-dimensional gels and identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight and electrospray ionization quadrupole time-of-flight. We report that anuran cornea is made up of the full complement of ubiquitous lens alpha-, beta-, and gamma-crystallins, mainly localized in the corneal epithelium. In addition, some taxon-specific lens crystallins and novel proteins, such as alpha- or beta-enolase/tau-crystallin, were also identified. Our data present a unique case of the anuran cornea where the same crystallins are used in the lens and in the cornea, thus supporting the earlier idea that crystallins are essential for the visual functions of the cornea as they perform for the lens. High levels of lens alpha-, beta-, and gamma-crystallins have not been reported in the cornea of any species studied so far and may offer a possible explanation for their inability to regenerate a lens after lentectomy. Our data that anuran cornea has an abundant quantity of almost all the lens crystallins are consistent with its ability to form a lens, and this connection is worthy of further studies.  相似文献   

13.
Past studies have established that the cornea like the lens abundantly expresses a few water-soluble enzyme/proteins in a taxon specific fashion. Based on these similarities it has been proposed that the lens and the cornea form a structural unit, the 'refracton', that has co-evolved through gene sharing to maximize light transmission and refraction to the retina. Thus far, the analogy between corneal crystallins and lens crystallins has been limited to similarities in the abundant expression, with few reports concerning their structural function. This review covers recent studies that establish a clear relationship between expression of corneal crystallins and light scattering from corneal stromal cells, i.e. keratocytes, that support a structural role for corneal crystallins in the development of transparency similar to that of lens crystallins that would be consistent with the 'refracton' hypothesis.  相似文献   

14.
In humans, the crystallin proteins of the ocular lens become yellow-coloured and fluorescent with ageing. With the development of senile nuclear cataract, the crystallins become brown and additional fluorophores are formed. The mechanism underlying crystallin colouration is not known but may involve interaction with kynurenine-derived UV filter compounds. We have recently identified a sulphur-linked glutathionyl-3-hydroxykynurenine glucoside adduct in the lens and speculated that kynurenine may also form adducts with GSH and possibly with nucleophilic amino acids of the crystallins (e.g. Cys). Here we show that kynurenine modifies calf lens crystallins non-oxidatively to yield coloured (365 nm absorbing), fluorescent (Ex 380 nm/Em 450-490 nm) protein adducts. Carboxymethylation and succinylation of crystallins inhibited kynurenine-mediated modification by approx. 90%, suggesting that Cys, Lys and possibly His residues may be involved. This was confirmed by showing that kynurenine formed adducts with GSH as well as with poly-His and poly-Lys. NMR studies revealed that the novel poly-Lys-kynurenine covalent linkage was via the epsilon-amino group of the Lys side chain and the betaC of the kynurenine side chain. Analysis of tryptic peptides of kynurenine-modified crystallins revealed that all of the coloured peptides contained either His, Cys or an internal Lys residue. We propose a novel mechanism of kynurenine-mediated crystallin modification which does not require UV light or oxidative conditions as catalysts. Rather, we suggest that the side chain of kynurenine-derived lens UV filters becomes deaminated to yield an alpha,beta-unsaturated carbonyl which is highly susceptible to attack by nucleophilic amino acid residues of the crystallins. The inability of the lens fibre cells to metabolise their constituent proteins results in the accumulation of coloured/fluorescent crystallins with age.  相似文献   

15.
Krivandin AV  Muranov KO 《Biofizika》1999,44(6):1088-1093
The supramolecular structure of crystallins in intact ocular lenses of carp, frog and rat as well as in the interior (nuclear) and outer (cortical) parts of these lenses was studied by the small-angle X-ray scattering method. The results show that the supramolecular structure of crystallins substantially varies both in lenses of different vertebrate species and in various parts of the same lens. In carp lens and in the cortical part of rat lens, crystallins have an ordered supramolecular structure, as indicated by a small-angle X-ray diffraction maximum in the region of Bragg distances 15-20 nm, whereas in frog lens and in the nuclear part of rat lens, the supramolecular structure of these proteins is disordered. The power-law X-ray scattering by rat lens nucleus may be evidence of fractal structures in the lens. A comparison of these results with literary data indicates that there is no obvious correlation between the type of supramolecular structure of crystallins and their polypeptide composition in lenses of different vertebrate species. The results suggest that the supramolecular ordering (short-range order) of crystallins is not a necessary condition for lens transparency.  相似文献   

16.
Molecular models for Rana gamma-1 and gamma-2 crystallins have been constructed using computer graphics on the basis of the protein primary structure derived from the complementary DNA sequence and the three-dimensional structure of calf gamma-II crystallin that has been defined at high resolution by X-ray analysis. The models show that the cores of the two domains are conserved as hydrophobic, with the polypeptide chain arranged as a four Greek-key motif structure. Although many lysines replace arginines at equivalent positions in mammalian proteins, the Rana crystallins also have an extensive series of ion pairs on their surface; these are strongly implicated in their function as stable structural molecules, which are highly conserved in the evolution of the vertebrate eye lens.  相似文献   

17.
The eye lens crystallins of the octopus Octopus dofleini were identified by sequencing abundant proteins and cDNAs. As in squid, the octopus crystallins have subunit molecular masses of 25-30 kDa, are related to mammalian glutathione S-transferases (GST), and are encoded in at least six genes. The coding regions and deduced amino acid sequences of four octopus lens cDNAs are 75-80% identical, while their non-coding regions are entirely different. Deduced amino acid sequences show 52-57% similarity with squid GST-like crystallins, but only 20-25% similarity with mammalian GST. These data suggest that the octopus and squid lens GST-like crystallin gene families expanded after divergence of these species. Northern blot hybridization indicated that the four octopus GST-like crystallin genes examined are lens-specific. Lens extracts showed about 40 times less GST activity using 1-chloro-2,4-dinitrobenzene as substrate than liver extracts of the octopus, indicating that the major GST-like crystallins are specialized for a lens structural role. A prominent 59-kDa crystallin polypeptide, previously observed in octopus but not squid and called omega-crystallin (Chiou, S.-H. (1988) FEBS Lett. 241, 261-264), has been identified as an aldehyde dehydrogenase. Since cytoplasmic aldehyde dehydrogenase is a major protein in elephant shrew lenses (eta-crystallin; Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) the octopus aldehyde dehydrogenase crystallin provides the first example of a similar enzyme-crystallin in vertebrates and invertebrates. The use of detoxification stress proteins (GST and aldehyde dehydrogenase) as cephalopod crystallins indicates a common strategy for recruitment of enzyme-crystallins during the convergent evolution of vertebrate and invertebrate lenses. For historical reasons we propose that the octopus GST-like crystallins, like those of the squid, are called S-crystallins.  相似文献   

18.
Specific protein synthesis in the embryonic mouse lens was studied by immunofluorescence with antisera to adult mouse lens or crystallin fractions. Positive reactions were first detected in a few cells of the lens cup 18-24 hr after contact between optic vesicle and presumptive lens ectoderm had been established. During formation of the lens vesicle a rapidly increasing fraction of cells produced crystallins. At the time of detachment of the vesicle from the surface all cells of its posterior wall showed immunofluorescence. After fiber elongation became distinct cells of the anterior epithelium began to fluoresce and shortly afterwards the entire rudiment produced crystallins. The early reactions were due entirely to the presence of alpha-crystallin. Reactions were restricted to the lens. Thus, in the mouse as in other species crystallins were detectable by immunofluorescence in vivo only after lens morphogenesis was well underway and only in the lens rudiment itself. Cells first synthesizing crystallins always had an elongated shape and their nuclei were in a basal position. A few hours later mitotic cells displayed fluorescence. Taking into account earlier found relations between cell morphology and cell cycle phase, this indicates that alpha-crystallin is first demonstrable in the S-or early G-2 phase of the cell cycle, and that the start of its synthesis does not preclude continued cell replication. It is interesting that the cellular location, cell cycle phase, and developmental stage, in which crystallins first appear, are comparable in mouse and chick embryo. Yet, entirely different proteins are involved: alpha-crystallin in the first, delta-crystallin in the latter. Implications of this for our understanding of lens induction are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号