首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

2.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

3.
Summary A fibrous support was used forZ. mobilis immobilization. The system showed a broad optimum temperature range (25–35°C) for highest ethanol productivity, ethanol yield and glucose conversion during continuous fermentation of a 100 g/L glucose medium. Ethanol production and glucose conversion kept steady during two months of continuous operation at D=1h–1.  相似文献   

4.
Kim TB  Lee YJ  Kim P  Kim CS  Oh DK 《Biotechnology letters》2004,26(8):623-627
Long-term cell recycle fermentations of Candida tropicalis were performed over 14 rounds of fermentation. The average xylitol concentrations, fermentation times, volumetric productivities and product yields for 14 rounds were 105 g l–1, 333 h, 4.4 g l–1 h–1 and 78%, respectively, in complex medium; and 110 g l–1, 284 h, 5.4 g l–1 h–1 and 81%, respectively, in a chemically defined medium. These productivities were 1.7 and 2.4 times those with batch fermentation in the complex and chemically defined media, respectively. The xylitol yield from xylose with cell recycle fermentation using the chemically defined medium was 81% (w/w), which was 7% greater than the xylitol yield with batch fermentation (74%); both modes of fermentation gave the same yield using the complex medium. These results suggest that the chemically defined medium is more suitable for production of xylitol than complex medium.  相似文献   

5.
Acceleration of high gravity yeast fermentations by acetaldehyde addition   总被引:5,自引:0,他引:5  
In high gravity Saccharomyces cerevisiae fermentations containing 300 g glucose l–1, daily addition of acetaldehyde to a total of 93 mM shortened the time required to ferment the first 250 g glucose l–1 from 790 h to 585 h. Acetaldehyde feeding had no effect on the ethanol yield but increased by 135%, 78% and 77% the final concentrations of 2,3-butanediol, 2-methylpropanol and acetate, while decreasing that of glycerol by 14%. Controlled acetaldehyde feeding has potential as a technique for accelerating high gravity fuel or industrial ethanol fermentations and may be useful in preventing incomplete fermentations.  相似文献   

6.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

7.
Summary Extractive fermentation is shown to greatly improve the performance ofZymomonas mobilis in continuous culture during the conversion of concentrated substrates to ethanol, and it is also used to eliminate the oscillatory behavior often exhibited byZ. mobilis in conventional fermentations. An ethanol productivity of 15.6 g/Lh is achieved with the near-conversion of a 295 g/L glucose feed at a medium dilution rate of 0.11 h–1 and solvent dilution rate of 1.5 h–1. This is more than triple the productivity obtained during conventional fermentation of a 135 g/L glucose feed at the same medium dilution rate.  相似文献   

8.
The continuous bioconversion of xylose-containing solutions (obtained by acid hydrolysis of barley bran) into xylitol was carried out using the yeast Debaryomyces hansenii under microaerophilic conditions with or without cell recycle. In fermentations without cell recycle, the volumetric productivities ranged from 0.11–0.6 g l–1 h–1 were obtained for dilution rates of 0.008–0.088 h–1. In experiments performed with cell recycle after membrane separation, the optimum xylitol productivity (2.53 g l–1 h–1) was reached at a dilution rate of 0.284 h–1.  相似文献   

9.
A model has been developed to calculate the ethanol production in a well-mixed fluidized bed reactor. This model takes into account diffusion and the reaction inside porous glass beads and the activity of suspended cells in the fluidized bed reactor. The associated model parameters have been determined from the literature and by kinetic studies with Zymomonas mobilis in a continuous stirred tank reactor. The model permits good predictions of steady-state data in a fluidized bed reactor at residence times longer than 1–1.5 h. The immobilization of Z. mobilis in a fluidized bed reactor results in high ethanol space-time yields of more than 50 g·–1·h–1 at a glucose conversion of 80% (glucose in substrate: 120 gl–1). At 99% conversion a space-time yield of 30 g·–1·–1 can be achieved when two fluidized bed reactors operate as cascade.  相似文献   

10.
Grape skins as a natural support for yeast immobilization   总被引:1,自引:0,他引:1  
Grape skins were used to immobilize Saccharomyces cerevisiae. In repeated batch fermentations of grape by immobilized and free cells, the maximum specific rate of alcohol production on glucose decreased from 7.98 h–1 at 25 °C to 0.7 h–1 at 5 °C. The rate was approximately twice as high as that on fructose. The rates for free cells were very low. The maximum alcohol yield (0.45 g g–1) was obtained at 5 °C when the immobilized biocatalyst was used.  相似文献   

11.
Summary The possibility of using polyurethane foam as a support for the immobilization ofZymomonas mobilis cells to carry out sucrose conversion to ethanol was investigated. Sucrose hydrolysis efficiencies of 90% and higher, volumetric reactor productivity of 20 gL–1h–1 and final ethanol concentration of 6.3% (v/v) at a dilution rate of 0.4 h–1 show the good performance of polyurethane foams for whole cell immobilization.  相似文献   

12.
Summary To investigate simultaneous alcoholic fermentation of glucose and xylose derived from lignocellulosic material by separate or co-culture processes, the effect of oxygen transfer rate (OTR) on the fermentation of 50 g/l xylose by Pichia stipitis NRRL Y 7124 and Candida shehatae ATCC 22984, and the fermentation of 50 g/l glucose by Saccharomyces cerevisiae CBS 1200 and Zymomonas mobilis ATCC 10988 was carried out in batch cultures. The kinetic parameters of the xylose-fermenting yeasts were greatly dependent on the OTR. The optimum OTR values were found to be 3.9 and 1.75 mmol·1–1·h–1 for C. shehatae and P. stipitis, respectively. By contrast the fermentative parameters of S. cerevisiae were poorly affected by the OTR range tested (0.0–3.5 mmol·l–1·h–1) Under these conditions the ethanol yields ranged from 0.41 g·g–1 to 0.45 g·g–1 and the specific ethanol productivity was around 0.70 g·g–1·h–1. Z. mobilis gave the highest fermentative performance under strictly anaerobic conditions (medium continually flushed with nitrogen): under these conditions, the ethanol yield was 0.43 g·g–1 and the average specific ethanol productivity was 2.3 g·g–1·h–1. Process considerations in relation to the effect of OTR on the fermentative performance of the tested strains are discussed. Offprint requests to: J. P. Delgenes  相似文献   

13.
Glucose repressed xylose utilization inCandida tropicalis pre-grown on xylose until glucose reached approximately 0–5 g l–1. In fermentations consisting of xylose (93 g l–1) and glucose (47 g l–1), xylitol was produced with a yield of 0.65 g g–1 and a specific rate of 0.09 g g–1 h–1, and high concentrations of ethanol were also produced (25 g l–1). If the initial glucose was decreased to 8 g l–1, the xylitol yield (0.79 g g–1) and specific rate (0.24 g g–1 h–1) increased with little ethanol formation (<5 g l–1). To minimize glucose repression, batch fermentations were performed using an aerobic, glucose growth phase followed by xylitol production. Xylitol was produced under O2 limited and anaerobic conditions, but the specific production rate was higher under O2 limited conditions (0.1–0.4 vs. 0.03 g g–1 h–1). On-line analysis of the respiratory quotient defined the time of xylose reductase induction.  相似文献   

14.
Lactic acid was added to batch very high gravity (VHG) fermentations and to continuous VHG fermentations equilibrated to steady state with Saccharomyces cerevisiae. A 53% reduction in colony-forming units (CFU) ml–1 of S. cerevisiae was observed in continuous fermentation at an undissociated lactic acid concentration of 3.44% w/v; and greater than 99.9% reduction was evident at 5.35% w/v lactic acid. The differences in yeast cell number in these fermentations were not due to pH, since batch fermentations over a pH range of 2.5–5.0 did not lead to changes in growth rate. Similar fermentations performed in batch showed that growth inhibition with added lactic acid was nearly identical. This indicates that the apparent high resistance of S. cerevisiae to lactic acid in continuous VHG fermentations is not a function of culture mode. Although the total amount of ethanol decreased from 48.7 g l–1 to 14.5 g l–1 when 4.74% w/v undissociated lactic acid was added, the specific ethanol productivity increased ca. 3.2-fold (from 7.42×10–7 g to 24.0×10–7 g ethanol CFU–1 h–1), which indicated that lactic acid stress improved the ethanol production of each surviving cell. In multistage continuous fermentations, lactic acid was not responsible for the 83% (CFU ml–1) reduction in viable S. cerevisiae yeasts when Lactobacillus paracasei was introduced to the system at a controlled pH of 6.0. The competition for trace nutrients in those fermentations and not lactic acid produced by L. paracasei likely caused the yeast inhibition.  相似文献   

15.
Whereas Saccharomyces cerevisiae uses the Embden‐Meyerhof‐Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner‐Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ~100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost‐effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass.  相似文献   

16.
The maximum productivity of -glucosidase by Saccharomyces cerevisiaerecombinants under the control of GALI promoter was 100 IU l–1 h–1. The highest productivity of -glucosidase by a S. cerevisiae recombinant was 16-fold more than that supported by Cellulomonas biazotea. The recombinants also co-produced ethanol from cellobiose: maximum product yield and productivity were 0.5 and 1.1 g ethanol g–1 cellobiose and g ethanol l–1 h–1, respectively.  相似文献   

17.
Growth kinetics ofSaccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30°C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L–1 h–1 and 0.23 g cells g–1 sugar, respectively, on glucose syrup and 0.22 g L–1 h–1 and 0.18 g cells g–1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L–1 h–1 and an overall cell yield of 0.52 g cells g–1 sugar in glucose syrup cultivation and a productivity of 2.33 g L–1 h–1 and an overall cell yield of 0.46 g cells g–1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon® tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L–1 h–1 with a yield of 0.47 g cells g–1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.  相似文献   

18.
A continuous fluidized bed reactor operation system has been developed for ethanol production by Zymomonas mobilis using hydrolysed B-starch without sterilization. The operation system consists of two phases. In the first phase macroporous glass carriers in a totally mixed fluidized bed reactor were filled up totally with a monoculture of Z. mobilis by fast computer-controlled colonization, so that in the subsequent production phase no contaminants, especially lactic-acid bacteria, could penetrate into the carrier beads. In the production phase the high concentration of immobilized Z. mobilis cells in the fluidized bed reactor permits unsterile fermentation of hydrolysed B-starch to ethanol at short residence times. This results in wash-out conditions for contaminants from the substrate. Long-term experimental studies (more than 120 days) of unsterile fermentation of hydrolysed B-starch in the laboratory fluidized bed reactor (2.2 l) demonstrated stable operation up to residence times of 5 h. A semi-technical fluidized bed reactor plant (cascade of two fluidized bed reactors, each 55 l) was operated stably at a mean residence time of 4.25 h. Glucose conversion of 99% of the unsterile hydrolysed B-starch was achieved at 120 g glucose/l–1 in the substrate, resulting in an ethanol concentration of 50 g·l–1 and an ethanol space-time yield of 13 g·l–1·h–1. This is a factor of three compared to ethanol fermentation of hydrolysed B-starch with Z. mobilis in a continuous stirred tank reactor, which can only be operated stably under sterile conditions. Correspondence to: D. Weuster-Botz  相似文献   

19.
The tolerance of sol-gel immobilised and free Saccharomyces cerevisiae to ethanol was studied. The effects of ethanol preincubation time showed that the specific death velocity decreased from 2×105 c.f.u. min–1 for free cells to 2×104 c.f.u. min–1 for immobilised cells thus indicating that immobilised yeast was far less sensitive to the ethanol damage. The specific glucose consumption of immobilised and free cells on a per cell basis was 3×10–12 g cell–1 h–1 and 9×10–12 g cell–1 h–1, respectively.  相似文献   

20.
Continuous and repeat-batch biofilm fermentations using Actinobacillus succinogenes were performed with immobilized and suspended-cell systems. For the immobilized continuous system, plastic composite supports (PCS) containing 50% (w/w) polypropylene (PP), 35% (w/w) ground soybean hulls, 5% (w/w) dried bovine albumin, 2.5% (w/w) soybean flour, 2.5% (w/w) yeast extract, 2.5% (w/w) dried red blood cells, and 2.5% (w/w) peptone, or PP tubes (8.5 cm in length) were arranged around the agitator shaft in a grid formation. Agitation was controlled at 125 rpm and 150 rpm. Samples were taken at dilution rates of 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 h–1 and analyzed for succinic acid production and glucose consumption (g l–1). For PCS bioreactors, the highest final succinic acid concentrations (10.1 g –1, 10.4 g l–1) and percentage yields (62.6%, 71.6%) occurred at the dilution rate of 0.2 h–1. PCS disks were evaluated in a repeat-batch biofilm reactor. Suspended-cell batch fermentations were performed in flasks and a repeat-batch bioreactor. The maximum concentration of succinic acid produced was 40 g l–1. Peak succinic acid percentage yields in continuous and repeat-batch fermentations of A. succinogenes were observed in suspended-cell continuous fermentations at a dilution rate of 1.0 h–1 (76.2%) and in PCS repeat-batch fermentations with an initial glucose concentration of 40 g l–1 (86.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号