首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim There has been much work on succession over many decades, but succession fundamentals are still debated because of the reliance on chronosequences and dendrochronological reconstruction, both of which are problematic approaches. Here we use time‐series data to test four hypotheses that lie at the heart of successional theory: (1) the neighbourhood effect hypothesis – tree species abundance is time dependent; (2) the density‐dependence hypothesis – a rare species is more favoured over time; (3) the resource ratio hypothesis – species that can grow at the lowest resource level tend to dominate resource limited sites through succession; and (4) the intermediate disturbance hypothesis – intermediate disturbances increase the abundance of rare species. Location Central boreal forest in Canada (47°50′–50°10′ N; 80°10′–85°50′ W). Methods We used repeated measurements from sequential aerial photography and ground surveys for 361 fire‐origin stands that were measured over a c. 55‐year period. Results Shade‐intolerant Pinus banksiana decreased, tolerant Thuja occidentalis increased, intolerant Populus spp. and Betula papyrifera displayed a U‐shaped trend, and intermediate‐tolerant Picea spp. and tolerant Abies balsamea did not change with time since fire, showing evidence of negative, positive, or neutral neighbourhood effects. Species either persisted for longer or increased more in non‐conspecific stands, and had higher increases in abundance when associated with species of contrasting shade tolerance, supporting the density‐dependence hypothesis and indicating shade‐tolerance complementarity as a mechanism for coexistence. Resource‐poor soils favoured those species capable of tolerating limited resources, whereas rich soils permitted invasion and promoted mixtures, supporting the resource ratio hypothesis. Intermediate disturbances increased the invasibility of rare species. Main conclusions Contrary to previous studies where time since a stand‐replacing disturbance is the sole predictor for succession, our study shows that time alone is either an insufficient predictor or is irrelevant to species dynamics in the boreal forest. Rather, density dependence, site resource and intermediate disturbances are key mechanisms in species dynamics and coexistence over time.  相似文献   

2.
Questions: How does woody vegetation abundance and diversity differ after natural disturbances causing different levels of mortality? Location: Abies balsamea–Betula papyrifera boreal mixed‐wood stands of southeast Quebec, Canada. Methods: Woody vegetation abundance and diversity were quantified and compared among three disturbance‐caused mortality classes, canopy gap, moderate‐severity disturbances, and catastrophic fire, using redundancy analysis, a constrained linear ordination technique, and diversity indices. Results: Substantial changes in canopy tree species abundance and diversity only occurred after catastrophic fire. Shade‐tolerant, late‐successional conifer species remained dominant after canopy gap and moderate‐severity disturbances, whereas shade‐intolerant, early‐successional colonizers dominated canopy tree regeneration after catastrophic fire. Density and diversity of mid‐tolerant and shade‐intolerant understory tree and shrub species increased as the impact of disturbance increased. Highest species richness estimates were observed after catastrophic fire, with several species establishing exclusively under these conditions. Relative abundance of canopy tree regeneration was most similar after canopy gap and moderate‐severity disturbances. For the sub‐canopy tree and shrub community, relative species abundances were most similar after moderate‐severity disturbances and catastrophic fire. Vegetation responses to moderate‐severity disturbances thus had commonalities with both extremes of the disturbance‐caused mortality gradient, but for different regeneration layers. Conclusions: Current spatio‐temporal parameters of natural disturbances causing varying degrees of mortality promote the development of a complex, multi‐cohort forest condition throughout the landscape. The projected increase in time intervals between catastrophic fires may lead to reduced diversity within the system.  相似文献   

3.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

4.
Question: In the boreal forest of eastern Canada, how does forest vegetation change in the sustained absence of fire? Location: Eastern boreal forest in Quebec's North Shore region, Canada (49°30′–50°00′N; 67°30′–68°35′W). Methods: Aerial photos from three different periods (1930, 1965 and 1987) were used to characterize changes in vegetation composition in 23 scenes of 200 ha. Time since fire, presence of secondary disturbances and data on soil and topographic variables were obtained. Ordination and clustering techniques were used to define compositional trajectories of change over the 57‐yr period. These trajectories were further grouped into pathways based on compositional changes, time since fire and preferential deposit‐drainage types. Results: Among the 26 compositional trajectories, three successional pathways were distinguished. Two start post‐fire succession with a dominance of intolerant hardwood. In one of these, this is followed by an increase in Abies balsamea, while in the second the importance of Picea mariana increases with time. In the third pathway P. mariana is an important component from the outset. In this pathway, we observed modest fluctuation in the relative dominance of P. mariana and A. balsamea and variation in stand structure. Conclusion: The boreal forest vegetation of Eastern Canada is diverse and dynamic even in the absence of fire, notably under the influence of partial disturbances. Such disturbances can be associated with changes in composition or stand structure. The development of management strategies aimed at maintaining stand diversity by emulating a broader variety of partial and secondary disturbances should be encouraged.  相似文献   

5.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

6.
Abstract. Structural and compositional changes were analysed over the course of 400+ yr of post‐fire succession in the sub‐boreal forests of west‐central British Columbia. Using a chronosequence of 57 stands ranging from 11 to 438 yr in age, we examined changes in forest structure and composition with complementary PCA and DCA ordination techniques. To determine stand ages and timing of tree recruitment, approximately 1800 trees were aged. Most early successional forests were dominated by Pinus contorta, which established rapidly following fire. Abies lasiocarpa and Picea glauca × engel‐mannii were also able to establish quickly, but continued to establish throughout the sere. Few Pinus contorta survived beyond 200 yr, resulting in major changes in forest structure. In some stands P. contorta never established, which led to considerable variation among stands less than 200 yr old. The oldest forests converged on dominance by Abies lasiocarpa. Vascular plant diversity decreased during succession whereas canopy structure became more complex as gap dynamics developed. Although these sub‐boreal forests contain few tree species, successional changes were pronounced, with structure changing more than composition across the chronosequence.  相似文献   

7.
Abstract. Natural dynamics in the boreal forest is influenced by disturbances. Fire recurrence affects community development and landscape diversity. Forest development was studied in the northeastern boreal forest of Quebec. The objective was to describe succession following fire and to assess the factors related to the changes in forest composition and structure. The study area is located in northeastern Quebec, 50 km north of Baie‐Comeau. We used the forest inventory data gathered by the Ministère des Ressources naturelles du Québec (MRNQ). In circular plots of 400 m2, the diameter at breast height (DBH) of all stems of tree species greater than 10 cm was recorded and in 40 m2 subplots, stems smaller than 10 cm were measured. A total of 380 plots were sampled in an area of 6000 km2. The fire history reconstruction was done based on historical maps, old aerial photographs and field sampling. A time‐since‐fire class, a deposit type, slope, slope aspect and altitude were attributed to each plot. Each plot was also described according to species richness and size structure characteristics. Traces of recent disturbance were also recorded in each plot. Changes in forest composition were described using ordination analyses (NMDS and CCA) and correlated with the explanatory variables. Two successional pathways were observed in the area and characterized by the early dominance of intolerant hardwood species or Picea mariana. With time elapsed since the last fire, composition converged towards either Picea mariana, Abies balsamea or a mixture of both species and the size structure of the coniferous dominated stands got more irregular. The environmental conditions varied between stands and explained part of the variability in composition. Their effect tended to decrease with increasing time elapsed since fire, as canopy composition was getting more similar. Gaps may be important to control forest dynamics in old successional communities.  相似文献   

8.
Abstract. In order to explain conifer species recruitment in Canada's southeastern boreal forest, we characterized conifer regeneration microsites and determined how these microsites vary in abundance during succession. Microsite abundance was evaluated in deciduous, mixed and coniferous stands along a 234-yr postfire chronosequence. Conifers were most often found in relatively well-illuminated microsites, devoid of litter, especially broad-leaf litter, and with a reduced cover of lower vegetation (< 50 cm tall). Although associated with moss-rich forest floor substrates, Abies balsamea was the most ubiquitously distributed species. Picea glauca and especially Thuja occidentalis seedlings were frequently found on rotten logs. Light measurements did not show differences among seedling species nor between stand types. The percentage cover of broad-leaf litter decreased significantly during succession. Also, rotten logs covered with moss occupied a significantly larger area in the mid-successionnal stands than in early successional deciduous or late successional coniferous stands. The results suggest that the presence of specific forest floor substrate types is a factor explaining low conifer recruitment under deciduous stands, conifer codominance in the mid-successional stage, and delayed Thuja recolonization after fire. Results also suggest that some facilitation mechanism is responsible for the observed directional succession.  相似文献   

9.
The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve–linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached >30 m2/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100–400 trees/ha, it has less mortality, but reached the highest age (>350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed “mixed boreal forest” is a stage about 120 years after fire reaching a BA of >40 m2/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000–6,000 trees/ha), but Picea becomes dominant after 150–200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40–50 m2/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic.  相似文献   

10.
Abstract In late 2001 a category 3 cyclone impacted forest plots that were established in Tonga in 1995, and additionally, one plot was accidentally burned by an escaped land‐clearing fire. Subsequent surveys provide observations of 10 years of forest dynamics in this poorly studied region, and the first reported observations of large interannual variation in juvenile (seedling and sapling) abundance in the western tropical Pacific. The severely disturbed (burned) plot was initially colonized by a non‐native early pioneer, Carica papaya L., but 3.5 years later a native pioneer, Macaranga harveyana (Muell. Arg.) Muell. Arg., was the most abundant tree species. The seedling layer included some long‐lived pioneers and shade‐tolerant species. Two mature forest plots affected only by the cyclone changed very little over a decade. Late‐successional shade‐tolerant species that dominated the overstory were also abundant as seedlings and saplings. This is in contrast with a 30‐ to 40‐year‐old, formerly cultivated, secondary forest plot that still shows no recruitment of late‐successional dominants, in spite of the proximity of remnant forest patches. This study suggests differing pathways of succession following shifting cultivation versus cyclone and fire disturbances in Tonga. Land use legacies appear to have a long‐lasting effect on community composition.  相似文献   

11.
Abstract. Sirén (1955) studied understorey species composition, tree stand properties and humus‐layer thickness in 64 unlogged forest stands on topographically and pedologically comparable sites. The stands were of even age (6 – 300 yr), stocked with the first or second tree generation after wildfire. The view of Sirén and several authors after him, that the vegetation of old‐growth boreal Picea forests is homogeneous on a broad scale, was examined by applying, in parallel, the partial variants of two ordination methods (DCA and PCA) to Sirén's vegetation data. Two main vegetation gradients were found: a major gradient running from recently burnt plots with prominence of pioneer species to plots with stand age > 100 yr, a well stocked tree layer and a thick humus layer, dominance of feather‐mosses and ample occurrence of shade‐tolerant as well as light‐preferring vascular plant species, and a second gradient along which first‐ and second‐generation plots segregate. The more prominent element of Betula trees in first‐ than in second‐generation stands < 100 yr contributed to the latter. A minor third gradient related to humus‐layer thickness was recovered by partial DCA only. The main vegetation gradient reappeared in separate ordinations of data from 47 mature forest stands (> 100 yr), but without being correlated with forest age. Variation among mature‐forest stands in the importance of pioneer species is considered mainly to be brought about by fine‐scale disturbance processes such as tree uprooting. Increasing importance of factors operating on within‐stand scales [development of a varied gap structure and stronger gradients in tree influence (radiation at ground level), soil moisture, soil depth and nutrient availability] with time is also reflected in the second and third mature‐forest ordination axes. Possible implications of the results for conservation of biological diversity and monitoring of changes in boreal forests are discussed.  相似文献   

12.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

13.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances.  相似文献   

14.
Question: What are tree mortality rates and how and why do they vary in late‐successional Picea abies‐dominated forests? Do observed tree mortality patterns allow comparative assessment of models of long‐term stand development? Location: Northern boreal Fennoscandia. Methods: We measured stand structure in 10 stands in two different areas. We determined age distributions and constructed a chronology of tree deaths by cross‐dating the years of death of randomly sampled dead trees. Results: The stands in the two areas had contrasting tree age distributions, despite similar live tree structure. In one area, stands were relatively even‐aged and originated following a stand‐replacing fire 317 years earlier. The stands in the second area had an uneven age structure and virtually no signs of past fires, suggesting a very long period since the last major disturbance. The younger stands were characterized by a high mortality rate and inter‐annual variation, which we attributed to senescence of the relatively even‐aged stands approaching the maximum age of P. abies. In contrast, the tree mortality rates in the older stands were low and relatively stable. Conclusions: Patterns of tree mortality were, to a large extent, dependent on the time since the last stand‐replacing disturbance, suggesting that northern boreal P. abies stands eventually reach a shifting mosaic state maintained through small‐scale dynamics, but the time needed to reach this state appears to be lengthy; even 300 years after a forest fire stands showed changes in patterns of tree mortality that were related to the developmental stage of the stands.  相似文献   

15.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

16.
Abstract. Post-fire succession was reconstructed for a sector located in the southern part of the Québec boreal forest. Forest composition for different periods since fire was evaluated using a stand initiation map together with ecological maps representing both site conditions and stand types. Nine fires covering at least 100 ha and representing a chronosequence of more than 230 yr were used. Although a relatively clear successional pattern from deciduous to coniferous composition relating to time-since-fire was observed, Pinus banksiana stands showed an erratic distribution not related to succession but possibly to the pre-fire stand composition. A comparison with forest cover maps produced after a recent spruce budworm outbreak, showed that succession toward coniferous dominance appeared to be interrupted by spruce budworm (Choristoneura fumiferana) outbreaks which, by killing Abies balsamea, lead to a mixed deciduous forest composition. A simple empirical model based on a negative exponential distribution of age classes was developed to evaluate how changes in the fire cycle would affect the composition of the forest mosaic. The transition between deciduous dominance and coniferous dominance occurs in a fire cycle > 200 yr. Although pure deciduous stands tend to disappear during long fire cycles, the proportion of mixed stands remains relatively constant. Prediction of the forest composition for longer fire cycles is complicated by the interaction between post-fire composition and stand vulnerability to spruce budworm outbreaks.  相似文献   

17.
Question: To what extent do small‐scale disturbances in the forest canopy, created by natural disturbance agents, affect stand development? Doubts exist as to whether small canopy openings have any real effect on the understory tree recruitment, especially in boreal forests. Location: Conifer and mixed stands in the Gaspesian region in eastern Québec. The main natural disturbance agents are recurring outbreaks of Choristoneura fumiferana (eastern spruce budworm) and winds. Methods: Linear transects in 27 sites were used to describe the gap (< 0.1 ha) regime parameters, including gap fraction, gap size and change in disturbance severity through time. Three stand types were distinguished, based on a gradient of abundance of tree host species for the eastern spruce budworm. The impact of gaps was evaluated on the basis of changes in the number, the period of recruitment, and the composition of tree saplings present within gap areas. Changes were measured along the gap size gradient, and according to the pattern of recent budworm epidemics. Results: The gap fraction is highly variable (18%‐64%) and is on average relatively high (42%). Gap sizes have a positively skewed distribution. In most cases the growth rate among gap filling saplings increased sufficiently to date disturbance events. The composition and the structure of understory trees were affected by gap formation. The number of shade‐intolerant tree species did increase during or following periods of particularly severe canopy disturbances. However, the establishment or survival of shade intolerant species was not restricted to larger gaps or more intensely disturbed periods. Conclusions: In sub‐boreal forests of Eastern Canada, small scale disturbances in the tree canopy influence stand regeneration dynamics, but not to the extent that parameters such as sapling composition and recruitment patterns depend on gap regime characteristics.  相似文献   

18.
Abstract. 14 old, unlogged, Picea-dominated stands in the moist cool Sub-Boreal Spruce biogeoclimatic subzone of central British Columbia, Canada, were sampled to describe canopy heterogeneity, regeneration patterns and tree population age structures. These stands are composed of Picea engelmannii × glauca hybrids, Abies lasiocarpa and lesser amounts of Pinus contorta and Populus tremuloides, and had survived 124–343 yr since the last stand-destroying wildfire. Canopy cover was patchy and highly variable (ranging from 30.5 % to 86.4 %) but was not significantly related to stand age. Vertical canopy structure was less variable, reflecting the shade-tolerance and live crown ratios (length of live canopy expressed relative to tree height) of component species: 18.8 % for Populus, 20.2 % for Pinus, 46.7 % for Picea and 51.4 % for Abies. Individual stands varied considerably in their population structures and in their stand development trajectories, yet some patterns are evident. Survivors of the initial post-disturbance cohort of trees took 51 to 118 yr (mean = 80, s.d. = 20) to establish. Some stands had all tree species present during stand initiation, while other stands indicated early successional roles for Populus and Pinus, or a late successional role for Abies. Abies recruitment, while often slow in the beginning, occurs uniformly throughout the history of most stands, reflecting the high shade-tolerance of this species. Picea is often recruited in high densities early in stand development, and then (after long periods of exclusion) may be displaced by Abies in some stands but maintains itself in others. Minor, single-tree disturbances (due to bark beetles, root rot, and windthrow) were important in accelerating the reinitiation of Picea in the understory. Results thus suggest that stands from this region can be self-perpetuating in the absence of fire. Yet, post-fire tree populations still clearly dominate these spruce-fir forests, for only the oldest stand had greater basal area in the replacement cohort than in the initial cohort.  相似文献   

19.
A.K. Cajander's forest site type classification system is based on definition of plant communities typical to certain climatical and edaphical site conditions, but the structure and composition of the tree stands in Finland are considered sensitive to random variation and are therefore not used as primary classification criteria. The system has often received criticism, usually that the effects of the tree stand and successional stage of the stand have been underestimated. Most of the present-day forest stands in Finland represent young successional stages and are subjected to intensive management. This should result in an additional difficulty in the application of the forest site types in the field.The present study is based on three independent data sets representing forests on mineral soil in southern part of Finland. TWINSPAN classification, DCA ordination and canonical correspondence analysis (CCA) techniques were applied in successive stages of the data analysis. It was found that the definition of the intermediately fertile, mesic site types was clearly confused by the effects of the tree species and age of the stand. The analyses also revealed that the succession pathways on mesic forest sites are largely determined by the tree species composition. In stands dominated by Pinus sylvestris, the succession follows the competitive hierarchy model, whereas in stands dominated by Picea abies, severe shading of the tree canopy governs the development of understorey vegetation.Abbreviations CCA Canonical correspondence Analysis - DCA Detrended correspondence Analysis - TWINSPAN Two-way indicator species analysis  相似文献   

20.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号