首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Despite extensive research on the evolution of avian dichromatism, the anatomical bases for differences between the sexes in species with structurally coloured plumage remain largely unknown. Using full‐spectrum spectrometry and transmission electron microscopy, we compared the colour and morphology of rump feathers of male and female eastern bluebirds (Sialia sialis). The ultraviolet (UV)‐blue feather colour in this species is caused by coherent scattering of light within the medullary ‘spongy layer’ of feather barbs. This spongy layer lies beneath a keratin cortex and on top of a layer of melanin granules that surround a hollow central vacuole. Irregularly shaped electron‐dense regions are present within the cortex. Male and female S. sialis differed substantially in their plumage colour and feather structure. A backwards logistic regression predicted sex with 100% accuracy using the colour variables brightness, UV‐violet (UV‐V) chroma and spectral saturation. A second backwards logistical regression predicted sex with 100% accuracy using relative cortex area and size of air spaces. Thus, S. sialis are dimorphic both in colour and in the structures causing this colour. Multiple regression analyses using data pooled from both sexes indicated that multiple features of feather barb structure contributed to colour variation in complex ways. Brightness was negatively related to the relative surface area of cortex in barb cross‐sections. Hue was positively related and UV‐V chroma was negatively related to the distance between scattering elements (i.e. keratin rods and air spaces) in the spongy layer. In contrast, hue was negatively related and UV‐V chroma was positively related to the thickness of the spongy layer. UV‐V chroma was also negatively related to the relative area of electron‐dense regions in the cortex. Spectral saturation was negatively related to the distance between scatterers and the standard error of the size of air spaces. These results suggest that the dimensions of spongy‐layer elements are critical to colour production, but that UV‐blue coloration can also be modified by the cortex and the thickness of the spongy layer. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 259–271.  相似文献   

2.
Male eastern bluebirds Sialia sialis have striking ultraviolet (UV)-blue coloration on their heads, backs, rumps, wings, and tails and bold chestnut coloration on their breasts. These colored areas are ornaments that correlate with pairing date and reproductive effort, and thus probably influence the choice of mates by females. Such ornaments are expected to increase in color with age and body condition. We investigated the effects of age on body condition and the UV-blue and chestnut coloration of males over four years using both cross-sectional (comparing age classes) and longitudinal analyses (following individuals as they age). We found that both the body condition index and brightness of UV-blue rump coloration increased with age, while UV-blue tail plumage coloration increased between yearling and older males, and the chestnut breast coloration decreased in the oldest age class. The proximate mechanisms whereby individuals reliably signal age via rump brightness and tail coloration are probably different. Contour feathers, including rump feathers, are molted at approximately the same time in all age classes and are likely subject to the same production costs in all age classes. In contrast, the molt schedule of the tail and wing feathers differs between individuals of yearling and older age classes, with yearlings retaining wing and tail feathers for several months longer than adults. The relationship between tail color and age was probably, in part, a consequence of yearlings expressing tails that have increased feather wear and accumulation of dirt. In general, UV-blue coloration increased with age while chestnut plumage decreased with age, indicating that older individuals may tradeoff investing energy in structural and melanin ornaments. By assessing overall plumage coloration, female eastern bluebirds could estimate age class when choosing mates.  相似文献   

3.
Male eastern bluebirds (Sialia sialis) have two types of ornamentalplumage coloration: a brilliant blue-ultraviolet head, back,and wings, and a patch of chestnut breast feathers. The blue-UVcoloration is produced from feather microstructure, whereasthe chestnut coloration is produced by a combination of pheaomelaninand eumelanin pigments deposited in feathers. We tested thehypothesis that plumage coloration reflects male quality ineastern bluebirds, a socially monogamous, sexually dichromaticbird. We investigated whether male ornamentation correlateswith mate quality and parental effort. We quantified three aspectsof male ornament coloration: (1) size of the patch of chestnutbreast feathers, (2) reflectance properties of the chestnutplumage coloration, and (3) reflectance properties of the blue-ultravioletplumage coloration. We found that males with larger breast patchesand brighter plumage provisioned nestlings more often, fledgedheavier offspring, and paired with females that nested earlier.Males with plumage coloration that exhibit more ultraviolethues fledged more offspring. These results suggest that plumagecoloration is a reliable indicator of male mate quality andreproductive success. Both melanin-based and structural-basedplumages appear to be honest signals of male quality and parentalcare that can be assessed by competitors or by potential mates.  相似文献   

4.
Plumage coloration is generally perceived as a static traitand therefore not a good indicator of current condition. However,changing of feather colors after molt does occur and may haveimportant implications for signal function and sexual selection.We studied longitudinal changes in blue tit (Parus caeruleus)crown ultraviolet (UV)/blue color, a sexually selected trait,by repeatedly measuring the same individuals between early winterand late spring. Whereas crown UV reflectance (UV chroma andhue) decreased dramatically over time, brightness and saturationdid not show consistent patterns of change. The magnitude ofthe decline in coloration exceeded sexual and age dichromatismin hue and UV chroma, respectively. Hence, seasonal color changescould have strong effects on blue tit sexual signaling. Between-individualvariation in the decline in UV coloration was large and relatedto attributes of male, but not female, quality, such as sizeand condition. Thus, conspecifics could potentially gain informationabout male phenotypic quality by assessing color change overthe year. However, the degree of decline in male UV color didnot affect breeding success because neither the number of within-pairnor the number of extrapair offspring produced correlated withchanges in crown color. Seasonal changes in the expression ofplumage coloration are probably widespread, and maintainingplumage coloration could thus constitute an additional honesty-enforcingmechanism after molt is completed.  相似文献   

5.
Carotenoid-based plumage coloration of birds has been hypothesized to honestly reflect individual quality, either because carotenoids are difficult to acquire via food or because of a trade-off in allocation of carotenoids between maintenance and signaling functions. We tested whether differential foraging ability is a necessary precondition for maintaining individual differences in carotenoid-based plumage coloration in male greenfinches (Carduelis chloris). Wild-caught birds were brought into captivity, where half of them were supplemented with carotenoids while the other half was maintained on a carotenoid-poor diet. Color of the yellow parts of tail feathers, grown under natural conditions, was compared with that of the replacement feathers, grown in captivity. Carotenoid supplementation increased feather chroma (saturation). Color of wild-grown feathers significantly correlated with the color of lab-grown feathers. This result demonstrates the existence of a significant component of variation in carotenoid coloration, which reflects physiological qualities or genetic differences among individuals independent of foraging ability. Among both experimental groups, plasma carotenoid concentration during feather growth strongly correlated with chroma of the feathers grown in captivity. This indicates that carotenoid-based plumage coloration can reveal circulating carotenoid levels over a very wide range of concentrations, suggesting the ample signaling potential of such a mechanism.  相似文献   

6.
The Florida Scrub-Jay is a monogamous cooperative breeder in which both males and females display extensive structurally based blue plumage. Juveniles of this species exhibit blue tail and wing feathers that they begin growing as nestlings, and some of these feathers are retained throughout their first year. Although the birds appear to be sexually monochromatic, we assessed whether cryptic dichromatism exists in both the magnitude and pattern of coloration in tail feathers of juvenile Florida Scrub-Jays. We then determined whether variation in plumage coloration is associated with nutritional condition during molt. Tails of juvenile male Florida Scrub-Jays exhibit a greater proportion of UV reflectance than those of females. Mass at age 11 days and ptilochronology of the juvenile tail feathers were used as measures of individual nutritional condition during feather growth, and the latter was found to be positively associated with UV chroma. These data demonstrate that Florida Scrub-Jays are sexually dichromatic and suggest that variation in plumage color may be condition dependent, although we cannot rule out alternative explanations. Juvenile plumage coloration, therefore, has the potential to function as a signal of individual quality in both males and females.  相似文献   

7.
Elaborate and colorful feathers are important traits in female mate choice in birds. Plumage coloration can result from pigments deposited in feathers such as carotenoids and melanins, or can be caused by nano-scale reflective tissues (structurally based coloration), usually producing ultraviolet (UV) coloration. Structural colorations remain the least studied of the three most important feather colorations. Previous studies have found a female preference for UV color in the budgerigar, Melopsittacus undulatus, but it is not clear what information this ornament conveys, nor what is the possible cost associated with its production. We investigated possible correlations between immune response and plumage color of wild-type (green) male budgerigars. In particular we measured the wing web swelling resulting from injection of phytohaemagglutinin (PHA). We did not detect any correlation between the sedimentation rate and morphological and color variables. We found that UV chroma is the best predictor for the cutaneous immune activity. Indeed, male budgerigars with high UV reflectance in the breast feathers showed stronger immune responses. These results are consistent with the idea that UV colors are special signals conveying information about a bird’s condition.  相似文献   

8.
Feathers exhibit an extraordinary diversity of shapes, which are used by birds to accomplish a diverse set of functions. Pennaceous feathers have a double branched morphology that develops from a tube of epidermis, and variation in branch geometry determines feather shape. Feather development is both complex (i.e., a simple developmental modification can have multiple effects on mature feather shape), and redundant (i.e., different developmental modifications can create the same shape). Due to this, it is not readily apparent how different feather shapes develop. In many feathers, barbs are not straight, but instead curve in toward, or away, from the feather tip. Barb curvature can affect the shape of mature feathers but the development of curved barbs is unknown. Previous research has hypothesized that barb curvature could develop either during the helical growth of barb ridges in the tubular feather germ, or during barb angle expansion as the feather unfurls from the sheath. To better understand the development of curved barbs and their effects on mature feathers we present a theoretical model of curved barb development and test the model with empirical investigations of feathers. We find that curved barbs affect many aspects of feather morphology including vane width, barb length, and barb spacing. In real feathers, curved barbs can develop both during helical barb ridge growth and during barb angle expansion, with most of the observed curvature due to barb angle expansion. Our results demonstrate that barb angle expansion as a feather unfurls from the sheath is a complex and dynamic process that plays an important role in determining the shape and structure of mature feathers. Curved barbs create heterogeneity in barb geometry within the feather vane, which could have important implications for aerodynamic function and the development of within feather pigmentation patterns. J. Morphol. 277:995–1013, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
L. Alibardi 《Acta zoologica》2007,88(2):101-117
This ultrastructural study on the regenerating feathers of quail describes the cellular organization of the barb ridges responsible for the ramification of adult feathers. Bilateral symmetry of the barb ridges determines the organization of feather cells into feather branching. The length of the barb ridges, derived from the number of cells associated to form the barbule plates, determines the length of the barbule branching. Long chains of barb cells form long barbs that branch from the rachis with an increase of feather size. Supportive cells function as spacers between the barbule cells. New cells derive from stem cells localized in the collar region of the feather follicle, as indicated from the re‐organization of collar cells into barb ridges (a morphogenetic process inherited from that of embryonic feathers), production of an embryonic type of keratin (feather keratin), permanence of periderm granules (typical embryonic organelles) in barb vane ridge cells. Variations in the process of barb ridge morphogenesis allow the fusion of ridges into a rachis. The differentiation of hooklets contributes to the origin of planar feathers. Separation between rachis and merging barb ridges is by supportive cells, derived from the marginal plates of the barb ridges. Speculations on the evolution and diversification of feathers are presented.  相似文献   

10.
ADRIAN SURMACKI 《Ibis》2008,150(2):335-341
The plumage coloration of wild birds often changes during the breeding season. One of the possible reasons for this is that sunlight, and particularly ultraviolet (UV) wavelengths, degrades the pigments responsible for plumage coloration. It has been suggested that birds may apply preen wax to feathers to protect feathers from bleaching. This hypothesis is tested by exposing carotenoid-based breast feathers of Great Tits to ambient light, light filtered to exclude UV and darkness. Preen waxes were experimentally removed from feather samples and the effect of light on coloration of treatment and control feathers compared. Ambient light had an effect on feather colour but preen wax did not. Feathers exposed to sun gradually became less saturated and hues shifted towards shorter wavelengths. This was not apparent in control feathers kept in darkness. Feathers exposed to full-spectra sunlight faded more than those that were kept in light with UV wavelengths removed. There was a decrease in brightness of feathers in both experimental and control groups, which was assumed to be an effect of dirt accumulation. This experiment confirmed earlier suspicions regarding the detrimental effects of UV irradiation on carotenoid-based coloration of avian feathers but failed to show any protective function of preen waxes. The possible consequences of these mechanisms of colour change for birds with regard to mating strategies are discussed.  相似文献   

11.
Evidence suggests that structural plumage colour can be an honest signal of individual quality, but the mechanisms responsible for the variation in expression of structural coloration within a species have not been identified. We used full-spectrum spectrometry and transmission electron microscopy to investigate the effect of variation in the nanostructure of the spongy layer on expression of structural ultraviolet (UV)-blue coloration in eastern bluebird (Sialia sialis) feathers. Fourier analysis revealed that feather nanostructure was highly organized but did not accurately predict variation in hue. Within the spongy layer of feather barbs, the number of circular keratin rods significantly predicted UV-violet chroma, whereas the standard error of the diameter of these rods significantly predicted spectral saturation. These observations show that the precision of nanostructural arrangement determines some colour variation in feathers.  相似文献   

12.
There is increasing evidence that melanin‐based plumage coloration correlates with different components of fitness and that it may act as a social or sexual signal of individual quality. We analysed variation in melanin pigmentation in the outermost tail feathers of the Common Snipe Gallinago gallinago. During courtship flights, male Snipe use their outermost tail feathers to generate a drumming sound, which plays a role in territory establishment and mate choice. As the outermost tail feathers are displayed to females during these flights, we predicted that conspicuous variation in their rusty‐brown (pheomelanin‐based) coloration may act as an honest signal of individual quality. To test this prediction, we spectrophotometrically measured brightness (an indicator of total melanin content) and red chroma (an indicator of pheomelanin content) of the outermost tail feathers in 180 juvenile and adult Common Snipe. An age‐related decline in feather brightness was found exclusively in females, suggesting that melanization could have evolved by natural selection to camouflage incubating birds. In both sexes, brightness of the tail feathers was inversely correlated with their structural quality (as measured with mass–length residuals), suggesting that melanization could increase mechanical properties of feathers and, in males, enhance the quality of courtship sonation. Red chroma positively correlated with total plasma protein concentration, supporting our prediction that pheomelanin pigmentation of tail feathers may act as an honest signal of condition. Our study indicated that variation in the melanin‐based coloration of the outermost tail feathers in the Common Snipe could have evolved as a result of several different selection pressures and it emphasizes the complexity of the processes that underlie the evolution of melanin‐based plumage coloration in birds.  相似文献   

13.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

14.
Variation in avian coloration is produced by coordinated pigmentation of thousands of growing feathers that vary in shape and size. Although the functional consequences of avian coloration are frequently studied, little is known about its developmental basis, and, specifically, the rules that link feather growth to pigment uptake and synthesis. Here, we combine biochemical, modeling, and morphometric techniques to examine the developmental basis of feather pigmentation in house finches (Carpodacus mexicanus)--a species with extensive variation in both growth dynamics of ornamental feathers and their carotenoid pigmentation. We found that the rate of carotenoid uptake was constant across a wide range of feather sizes and shapes, and the relative pigmented area of feathers was independent of the total amount of deposited carotenoids. Analysis of the developmental linkage of feather growth and pigment uptake showed that the mechanisms behind partitioning the feather into pigmented and nonpigmented parts and the mechanisms regulating carotenoid uptake into growing feathers are partially independent. Carotenoid uptake strongly covaried with early elements of feather differentiation (the barb addition rate and diameter), whereas the pigmented area was most closely associated with the rate of feather growth. We suggest that strong effects of carotenoid uptake on genetically integrated mechanisms of feather growth and differentiation provide a likely route for genetic assimilation of diet-dependent coloration.  相似文献   

15.
Although the condition‐dependence and signaling function of ornamental plumage coloration among adult males is well studied, less research has focused on the information content of ornamental coloration among juvenile birds. Eastern Bluebird (Sialia sialis) nestlings grow their nuptial plumage while in the nest and dependent on parents for food, making them an ideal species for studying the development and function of elaborate plumage. Previous research suggests that plumage brightness of Eastern Bluebirds functions, in the juvenile stage, in parent–offspring interactions as a sexually selected trait in adults. Using an experimental approach, we tested the effects of supplemental food on the structural plumage coloration (i.e., tips of primary feathers) of Eastern Bluebird nestlings in Watauga County, North Carolina, during the 2011 breeding season. We provided supplemental mealworms daily to breeding pairs from the onset of incubation through the nestling period, and measured plumage brightness, UV chroma, and mass of nestlings (N = 89 males and 71 females). Male nestlings of supplementally fed parents exhibited brighter plumage. The mass and UV chroma of young bluebirds were not significantly affected by food supplementation. However, the relationship between mass and brightness differed between male nestlings in the control and supplementally fed treatments. Males reared in food‐supplemented territories exhibited a positive relationship between color and mass. Nestlings in control territories, however, exhibited a negative relationship between size and brightness, suggesting that reduced food availability results in a tradeoff between allocating resources toward somatic growth and development of bright plumage. Our results suggest that UV‐blue structural plumage in male juvenile Eastern Bluebirds is at least partially condition‐dependent and may help to explain why plumage color can influence social interactions in Eastern Bluebirds.  相似文献   

16.
Birds frequently display a colourful plumage which is important both in inter and intraespecific communication, and either in sexual and social contexts. In last years some methodologies have been developed to, analyse plumage coloration, but the use of the spectrometers has been particularly important for UV range. Measurement of plumage coloration with the spectrometer may be taken directly on the bird or, alternatively by collecting some feathers and measuring them later in the laboratory. However, few is known about the reliability of measures obtained from feathers and whether these are really representative of plumage coloration. We tested this assumption analysing measurements of carotenoids-based coloration components (lightness, chroma and hue) and lutein peak of the yellow breast of the great tit Parus major. We used two spectrometers (Ocean optics and Minolta) which calculate differently the colour components. Our results showed that direct measurement of bird was highly repeatable to determine lightness, chroma and hue for both spectrometers. Similar results we found for collected feathers procedure for both devices. Collected feathers provided high representative measurements of colour values with Minolta spectrometer. Lightness was highly repeatable when we used Ocean optic spectrometer, but chroma and hue were moderate. Lutein peak was also highly repeatable in all cases. The number of feathers used to measure plumage coloration in collected feathers procedure strongly influenced values of colour plumage variables. In general, values of lightness, chroma and hue stabilised when more than 10–15 feathers were used although we found slight differences between spectrometers. However, only four feathers were needed for lutein peak. Thus, our results stress the need to use a minimum number of feathers in measuring plumage coloration from collected feathers.  相似文献   

17.
Evolving a Protofeather and Feather Diversity   总被引:6,自引:4,他引:2  
It is likely that feathers evolved from a conical shaped tuberclerather than a plate-like structure. Although the morphologyof the presumably most primitive feather is unknown, minimalconditions for its production include the cellular capacityto synthesize feather proteins (=-keratin) which provides themolecular phenotype, and a follicular mechanism for productionand assembly of molecular and gross structure. Once the minimalstructural element, presumably recognizable as a barb, existed,a variety of phenotypes followed rapidly. A tubercular growthcenter of appropriate size could produce a simple barb-likeelement, with cortex and medulla. This might be recognized externallyas a bristle, but need never existed as a separate morphologicalunit. Rather, if individual placodes gave rise to multiple barbridges that fused proximally, a structure resembling natal downwould have resulted. Subsequent differentiation is controlledby the follicular symmetry, and the feather shape is regulatedby barb length. Barb length is directly related to growth period.As feathers appear to grow at roughly similar, size independentrates, shape is determined by individual barb growth periods.The simple fusion of individual proto-barbs would produce amorphology identifiable as natal down. Although this might bethe simplest feather structure, others could emerge quickly,perhaps simultaneously, a consequence of the same redundantprocessing. Once the machinery existed, broad phenotypic plasticitywas possible. I constructed a feather phylogram based on theseconditions, the fossil record, and ontogeny. I organized thesubsequent changes in morphology by perceived complexity. Thechanges are simply individual responses to similar processesthat might be time (when in ontogeny) and space (where on body)dependent.  相似文献   

18.
Avian feathers are a complex evolutionary novelty characterized by structural diversity and hierarchical development. Here, I propose a functionally neutral model of the origin and evolutionary diversification of bird feathers based on the hierarchical details of feather development. I propose that feathers originated with the evolution of the first feather follicle-a cylindrical epidermal invagination around the base of a dermal papilla. A transition series of follicle and feather morphologies is hypothesized to have evolved through a series of stages of increasing complexity in follicle structure and follicular developmental mechanisms. Follicular evolution proceeded with the origin of the undifferentiated collar (stage I), barb ridges (stage II), helical displacement of barb ridges, barbule plates, and the new barb locus (stage III), differentiation of pennulae of distal and proximal barbules (stage IV), and diversification of barbule structure and the new barb locus position (stage V). The model predicts that the first feather was an undifferentiated cylinder (stage I), which was followed by a tuft of unbranched barbs (stage II). Subsequently, with the origin of the rachis and barbules, the bipinnate feather evolved (stage III), followed then by the pennaceous feather with a closed vane (stage IV) and other structural diversity (stages Va-f). The model is used to evaluate the developmental plausibility of proposed functional theories of the origin of feathers. Early feathers (stages I, II) could have functioned in communication, defense, thermal insulation, or water repellency. Feathers could not have had an aerodynamic function until after bipinnate, closed pennaceous feathers (stage IV) had evolved. The morphology of the integumental structures of the coelurisaurian theropod dinosaurs Sinosauropteryx and Beipiaosaurus are congruent with the model's predictions of the form of early feathers (stage I or II). Additional research is required to examine whether these fossil integumental structures developed from follicles and are homologous with avian feathers. J. Exp. Zool. (Mol. Dev. Evol.) 285:291-306, 1999.Copyright 1999 Wiley-Liss, Inc.  相似文献   

19.
Structural coloration has been hypothesized to play a role insexual selection, and we tested whether this was the case ina field study of the barn swallow Hirundo rustica. The dorsaliridescent plumage of barn swallows has a strong reflectancein the ultraviolet (UV) region, with adult males on averagereflecting 8-9% more than adult females, as revealed by a 2-yearstudy in southwestern Spain. The correlation between structural coloration (described by the reflectance in the UV part of thespectrum, UV chroma and blue chroma) and three other secondarysexual characters significantly associated with male matingsuccess (tail length, tail asymmetry, and red facial coloration)was weak and generally nonsignificant. Nor was there a significantrelationship between color parameters and body condition. Wetested for an association between structural coloration of the dorsal plumage and sexual selection in a number of independenttests. Arrival date of males was not significantly relatedto color; there was no significant relationship between colorationand probability of survival or age; mated males did not havestronger reflectance than unmated males; and the duration ofthe premating period was not significantly related to color.Reproductive success was not significantly correlated withplumage coloration in males, nor was the feeding rate of offspringby brightly colored males higher than that of males with lessbright plumage. Given that sample sizes were large, and the power of statistical tests high, we conclude that current sexualselection on the coloration of the dorsal plumage in the barnswallow is, at best, weak.  相似文献   

20.
1. A growing number of studies suggest that female ornaments are linked to maternal quality and influence male mate choice. These findings challenge the traditional male-biased view of sexual selection and the hypothesis that female ornaments are the outcome of a genetic correlation with male ornaments. To further test the hypothesis that female traits have a function, it is now essential to investigate their honesty and to determine how signalling and reproduction interact in females. If female traits are honest indicators of quality, then they are likely to have a specific signalling function. 2. We investigated whether carry-over effects of reproduction might ensure the honesty of plumage colour signalling of a bird species with conspicuous UV-blue and yellow coloration, the blue tit Cyanistes caeruleus. Reproductive effort was manipulated by removing clutches, thereby forcing both sexes to reproduce twice and to raise chicks later in the breeding season when food is less abundant. In the year following this manipulation, we investigated the change in plumage in experimental and control males and females. The change was measured in the two putative feather ornaments, the UV-blue cap and the yellow breast, and another feather trait probably less likely to be sexually selected: the wing length. We also tested whether higher-quality females had their coloration less affected by the experiment. 3. We found that control but not manipulated males and females increased their signal towards UV. In addition, in the manipulated group, females that were able to lay more eggs had their UV-blue coloration less affected by the treatment. For yellow coloration, we found that manipulated yearlings but not manipulated adults decreased their yellow chroma in comparison with control. Lastly, our results show that the condition of the manipulated females tended to be positively correlated with yellow chroma. 4. These results show that the trade-offs between reproduction and signalling can ensure the honesty of conspicuous plumage traits in female and male blue tits. In addition, they suggest that female traits have the potential to evolve under sexual selection in this and other bird species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号