首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca2 + binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position.  相似文献   

2.
Striated muscle contraction in most animals is regulated at least in part by the troponin-tropomyosin (Tn-Tm) switch on the thin (actin-containing) filaments. The only group that has been suggested to lack actin-linked regulation is the mollusks, where contraction is regulated through the myosin heads on the thick filaments. However, molluscan gene sequence data suggest the presence of troponin (Tn) components, consistent with actin-linked regulation, and some biochemical and immunological data also support this idea. The presence of actin-linked (in addition to myosin-linked) regulation in mollusks would simplify our general picture of muscle regulation by extending actin-linked regulation to this phylum as well. We have investigated this question structurally by determining the effect of Ca2+ on the position of Tm in native thin filaments from scallop striated adductor muscle. Three-dimensional reconstructions of negatively stained filaments were determined by electron microscopy and single-particle image analysis. At low Ca2+, Tm appeared to occupy the “blocking” position, on the outer domain of actin, identified in earlier studies of regulated thin filaments in the low-Ca2+ state. In this position, Tm would sterically block myosin binding, switching off filament activity. At high Ca2+, Tm appeared to move toward a position on the inner domain, similar to that induced by Ca2+ in regulated thin filaments. This Ca2+-induced movement of Tm is consistent with the hypothesis that scallop thin filaments are Ca2+ regulated.  相似文献   

3.
To identify the interaction sites of Tm, we measured the rotational motion of a spin-label covalently bound to the side chain of a cysteine that was genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, or 279. Most of the Tm residues were immobilized on actin filaments with myosin-S1 bound to them. The residues in the mid-portion of Tm, namely, 146, 174, 190, 209, and 230, were mobilized when the troponin (Tn) complex bound to the actin-Tm-S1 filaments. The addition of Ca2+ ions partially reversed the Tn-induced mobilization. In contrast, residues at the joint region of Tm, 13, 36, 271, and 279 were unchanged or oppositely changed. All of these changes were detected using a maleimide spin label and less obviously using a methanesulfonate label. These results indicated that Tm was fixed on thin filaments with myosin bound to them, although a small change in the flexibility of the side chains of Tm residues, presumably interfaced with Tn, actin and myosin, was induced by the binding of Tn and Ca2+. These findings suggest that even in the myosin-bound (open) state, Ca2+ may regulate actomyosin contractile properties via Tm.  相似文献   

4.
To identify the interaction sites of Tm, we measured the rotational motion of a spin-label covalently bound to the side chain of a cysteine that was genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, or 279. Most of the Tm residues were immobilized on actin filaments with myosin-S1 bound to them. The residues in the mid-portion of Tm, namely, 146, 174, 190, 209, and 230, were mobilized when the troponin (Tn) complex bound to the actin-Tm-S1 filaments. The addition of Ca2+ ions partially reversed the Tn-induced mobilization. In contrast, residues at the joint region of Tm, 13, 36, 271, and 279 were unchanged or oppositely changed. All of these changes were detected using a maleimide spin label and less obviously using a methanesulfonate label. These results indicated that Tm was fixed on thin filaments with myosin bound to them, although a small change in the flexibility of the side chains of Tm residues, presumably interfaced with Tn, actin and myosin, was induced by the binding of Tn and Ca2+. These findings suggest that even in the myosin-bound (open) state, Ca2+ may regulate actomyosin contractile properties via Tm.  相似文献   

5.
The Ca2+-dependent interaction of troponin I (TnI) with actin·tropomyosin (Tm) in muscle thin filaments is a critical step in the regulation of muscle contraction. Previous studies have suggested that, in the absence of Ca2+, TnI interacts with Tm and actin in reconstituted muscle thin filaments, maintaining Tm at the outer domain of actin and blocking myosin-actin interaction. To obtain direct evidence for this Tm-TnI interaction, we performed photochemical crosslinking studies using Tm labeled with 4-maleimidobenzophenone at position 146 or 174 (Tm*146 or Tm*174, respectively), reconstituted with actin and troponin [composed of TnI, troponin T (TnT), and troponin C] or with actin and TnI. After near-UV irradiation, SDS gels of the Tm*146-containing thin filament showed three new high-molecular-weight bands determined to be crosslinked products Tm*146-TnI, Tm*146-troponin C, and Tm*146-TnT using fluorescence-labeled TnI, mass spectrometry, and Western blot analysis. While Tm*146-TnI was produced only in the absence of Ca2+, the production of other crosslinked species did not show Ca2+ dependence. Tm*174 mainly crosslinked to TnT. In the absence of actin, a similar crosslinking pattern was obtained with a much lower yield. A tryptic peptide from Tm*146-TnI with a molecular mass of 2601.2 Da that was not present in the tryptic peptides of Tm*146 or TnI was identified using HPLC and matrix-assisted laser desorption/ionization time-of-flight. This was shown, using absorption and fluorescence spectroscopy, to be the 4-maleimidobenzophenone-labeled peptide from Tm crosslinked to TnI peptide 157-163. These data, which show that a region in the C-terminal domain of TnI interacts with Tm in the absence of Ca2+, support the hypothesis that a TnI-Tm interaction maintains Tm at the outer domain of actin and will help efforts to localize troponin in actin·Tm muscle thin filaments.  相似文献   

6.
Cardiac muscle contraction depends on interactions between thick (myosin) and thin (actin) filaments (TFs). TFs are regulated by intracellular Ca2+ levels. Under activating conditions Ca2+ binds to the troponin complex and displaces tropomyosin from myosin binding sites on the TF surface to allow actomyosin interactions. Recent studies have shown that in addition to Ca2+, the first four N-terminal domains (NTDs) of cardiac myosin binding protein C (cMyBP-C) (e.g. C0, C1, M and C2), are potent modulators of the TF activity, but the mechanism of their collective action is poorly understood. Previously, we showed that C1 activates the TF at low Ca2+ and C0 stabilizes binding of C1 to the TF, but the ability of C2 to bind and/or affect the TF remains unknown. Here we obtained 7.5 Å resolution cryo-EM reconstruction of C2-decorated actin filaments to demonstrate that C2 binds to actin in a single structural mode that does not activate the TF unlike the polymorphic binding of C0 and C1 to actin. Comparison of amino acid sequences of C2 with either C0 or C1 shows low levels of identity between the residues involved in interactions with the TF but high levels of conservation for residues involved in Ig fold stabilization. This provides a structural basis for strikingly different interactions of structurally homologous C0, C1 and C2 with the TF. Our detailed analysis of the interaction of C2 with the actin filament provides crucial information required to model the collective action of cMyBP-C NTDs on the cardiac TF.  相似文献   

7.
We have investigated the functions of troponin T (CeTnT-1) in Caenorhabditis elegans embryonic body wall muscle. TnT tethers troponin I (TnI) and troponin C (TnC) to the thin filament via tropomyosin (Tm), and TnT/Tm regulates the activation and inhibition of myosin-actin interaction in response to changes in intracellular [Ca2+]. Loss of CeTnT-1 function causes aberrant muscle trembling and tearing of muscle cells from their exoskeletal attachment sites (Myers, C.D., P.-Y. Goh, T. StC. Allen, E.A. Bucher, and T. Bogaert. 1996. J. Cell Biol. 132:1061–1077). We hypothesized that muscle tearing is a consequence of excessive force generation resulting from defective tethering of Tn complex proteins. Biochemical studies suggest that such defective tethering would result in either (a) Ca2+-independent activation, due to lack of Tn complex binding and consequent lack of inhibition, or (b) delayed reestablishment of TnI/TnC binding to the thin filament after Ca2+ activation and consequent abnormal duration of force. Analyses of animals doubly mutant for CeTnT-1 and for genes required for Ca2+ signaling support that CeTnT-1 phenotypes are dependent on Ca2+ signaling, thus supporting the second model and providing new in vivo evidence that full inhibition of thin filaments in low [Ca2+] does not require TnT.  相似文献   

8.
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca2+ on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca2+ and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca2+ allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca2+-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca2+, troponin operates as an inhibitor, while in activated muscles at high Ca2+, it acts as a promoter to initiate contraction.  相似文献   

9.
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.  相似文献   

10.
Troponin (Tn), in association with tropomyosin (Tm), plays a central role in the calcium regulation of striated muscle contraction. Fluorescence resonance energy transfer (FRET) between probes attached to the Tn subunits (TnC, TnI, TnT) and to Tm was measured to study the spatial relationship between Tn and Tm on the thin filament. We generated single-cysteine mutants of rabbit skeletal muscle α-Tm, TnI and the β-TnT 25-kDa fragment. The energy donor was attached to a single-cysteine residue at position 60, 73, 127, 159, 200 or 250 on TnT, at 98 on TnC and at 1, 9, 133 or 181 on TnI, while the energy acceptor was located at 13, 146, 160, 174, 190, 209, 230, 271 or 279 on Tm. FRET analysis showed a distinct Ca2+-induced conformational change of the Tm-Tn complex and revealed that TnT60 and TnT73 were closer to Tm13 than Tm279, indicating that the elongated N-terminal region of TnT extends beyond the beginning of the next Tm molecule on the actin filament. Using the atomic coordinates of the crystal structures of Tm and the Tn core domain, we searched for the disposition and orientation of these structures by minimizing the deviations of the calculated FRET efficiencies from the observed FRET efficiencies in order to construct atomic models of the Tn-Tm complex with and without bound Ca2+. In the best-fit models, the Tn core domain is located on residues 160-200 of Tm, with the arrowhead-shaped I-T arm tilting toward the C-terminus of Tm. The angle between the Tm axis and the long axis of TnC is ∼ 75° and ∼ 85° with and without bound Ca2+, respectively. The models indicate that the long axis of TnC is perpendicular to the thin filament without bound Ca2+, and that TnC and the I-T arm tilt toward the filament axis and rotate around the Tm axis by ∼ 20° upon Ca2+ binding.  相似文献   

11.
Two cardiomyopathy-causing mutations, E244D and K247R, in human cardiac troponin T (TnT) are located in the coiled-coil region of the Tn-core domain. To elucidate effects of mutations in this region on the regulatory function of Tn, we measured Ca2+-dependent ATPase activity of myofibrils containing various mutants of TnT at these residues. The results confirmed that the mutant E244D increases the maximum ATPase activity without changing the Ca2+-sensitivity. The mutant K247R was shown for the first time to have the effect similar to the mutant E244D. Furthermore, various TnT mutants (E244D, E244M, E244A, E244K, K247R, K247E, and K247A) showed various effects on the maximum ATPase activity while the Ca2+-sensitivity was unchanged. Molecular dynamics simulations of the Tn-core containing these TnT mutants suggested that the hydrogen-bond network formed by the side chains of neighboring residues around residues 244 and 247 is important for Tn to function properly.  相似文献   

12.
Cardiac myosin binding protein C (cMyBP-C) modulates cardiac contraction via direct interactions with cardiac thick (myosin) and thin (actin) filaments (cTFs). While its C-terminal domains (e.g. C8-C10) anchor cMyBP-C to the backbone of the thick filament, its N-terminal domains (NTDs) (e.g. C0, C1, M, and C2) bind to both myosin and actin to accomplish its dual roles of inhibiting thick filaments and activating cTFs. While the positions of C0, C1 and C2 on cTF have been reported, the binding site of the M-domain on the surface of the cTF is unknown. Here, we used cryo-EM to reveal that the M-domain interacts with actin via helix 3 of its ordered tri-helix bundle region, while the unstructured part of the M-domain does not maintain extensive interactions with actin. We combined the recently obtained structure of the cTF with the positions of all the four NTDs on its surface to propose a complete model of the NTD binding to the cTF. The model predicts that the interactions of the NTDs with the cTF depend on the activation state of the cTF. At the peak of systole, when bound to the extensively activated cTF, NTDs would inhibit actomyosin interactions. In contrast, at falling Ca2+ levels, NTDs would not compete with the myosin heads for binding to the cTF, but would rather promote formation of active cross-bridges at the adjacent regulatory units located at the opposite cTF strand. Our structural data provides a testable model of the cTF regulation by the cMyBP-C.  相似文献   

13.
To establish α-tropomyosin (Tm)'s structure–function relationships in cooperative regulation of muscle contraction, thin filaments were reconstituted with a variety of Tm mutants (Δ2Tm, Δ3Tm, Δ6Tm, P2sTm, P3sTm, P2P3sTm, P1P5Tm, and wtTm), and force and sliding velocity of the thin filament were studied using an in vitro motility assay. In the case of deletion mutants, Δ indicates which of the quasi-equivalent repeats in Tm was deleted. In the case of period (P) mutants, an Ala cluster was introduced into the indicated period to strengthen the Tm–actin interaction. In P1P5Tm, the N-terminal half of period 5 was substituted with that of period 1 to test the quasi-equivalence of these two Tm periods. The reconstitution included bovine cardiac troponin. Deletion studies revealed that period 3 is important for the positive cooperative effect of Tm on actin filament regulation and that period 2 also contributes to this effect at low ionic strength, but to a lesser degree. Furthermore, Tm with one extra Ala cluster at period 2 (P2s) or period 3 (P3s) did not increase force or velocity, whereas Tm with two extra Ala clusters (P2P3s) increased both force and velocity, demonstrating interaction between these periods. Most mutants did not move in the absence of Ca2+. Notable exceptions were Δ6Tm and P1P5Tm, which moved near at the full velocity, but with reduced force, which indicate impaired relaxation. These results are consistent with the mechanism that the Tm–actin interaction cooperatively affects actin to result in generation of greater force and velocity.  相似文献   

14.
Cardiac troponin T (cTnT) is a component of the troponin (Tn) complex in cardiac myocytes, and plays a regulatory role in cardiac muscle contraction by anchoring two other Tn components, troponin I (TnI) and troponin C, to tropomyosin (Tm) on the thin filaments. In order to determine the in vivo function of cTnT, we created a null cTnT allele in the mouse TNNT2 locus. In cTnT-deficient (cTnT−/−) cardiac myocytes, the thick and thin filaments and α-actinin-positive Z-disk-like structures were not assembled into sarcomere, causing early embryonic lethality due to a lack of heartbeats. TnI was dissociated from Tm in the thin filaments without cTnT. In spite of loss of Tn on the thin filaments, the cTnT−/− cardiac myocytes showed regular Ca2+-transients. These findings indicate that cTnT plays a critical role in sarcomere assembly during myofibrillogenesis in the embryonic heart, and also indicate that the membrane excitation and intracellular Ca2+ handling systems develop independently of the contractile system. In contrast, heterozygous cTnT+/− mice had a normal life span with no structural and functional abnormalities in their hearts, suggesting that haploinsufficiency could not be a potential cause of cardiomyopathies, known to be associated with a variety of mutations in the TNNT2 locus.  相似文献   

15.
16.
Rabbit skeletal muscle alpha-tropomyosin (Tm) and the deletion mutant (D234Tm) in which internal actin-binding pseudo-repeats 2, 3, and 4 are missing [Landis et al. (1997) J. Biol. Chem. 272, 14051-14056] were used to investigate the interaction between actin and tropomyosin or actin and troponin (Tn) by means of fluorescence resonance energy transfer (FRET). FRET between Cys-190 of D234Tm and Gln-41 or Cys-374 of actin did not cause any significant Ca2+-induced movement of D234Tm, as reported previously for native Tm [Miki et al. (1998) J. Biochem. 123, 1104-1111]. FRET did not show any significant S1-induced movement of Tm and D234Tm on thin filaments either. The distances between Cys-133 of TnI, and Gln-41 and Cys-374 of actin on thin filaments reconstituted with D234Tm (mutant thin filaments) were almost the same as those on thin filaments with native Tm (wild-type thin filaments) in the absence of Ca2+. Upon binding of Ca2+ to TnC, these distances on mutant thin filaments increased by approximately 10 A in the same way as on wild-type thin filaments, which corresponds to a Ca2+-induced conformational change of thin filaments [Miki et al. (1998) J. Biochem. 123, 324-331]. The rigor binding of myosin subfragment 1 (S1) further increased these distances by approximately 7 A on both wild-type and mutant thin filaments when the thin filaments were fully decorated with S1. This indicates that a further conformational change on thin filaments was induced by S1 rigor-binding (S1-induced or open state). Plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed that the curve for wild-type thin filaments is hyperbolic, whereas that for mutant thin filaments is sigmoidal. This suggests that the transition to the S1-induced state on mutant thin filaments is depressed with a low population of rigor S1. In the absence of Ca2+, the distance also increased on both wild-type and mutant thin filaments close to the level in the presence of Ca2+ as the molar ratio of S1 to actin increased up to 1. The curves are sigmoidal for both wild-type and mutant thin filaments. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding. For mutant thin filaments, the transition from the closed state to the open state in the presence of ATP is strongly depressed, which results in the inhibition of acto-myosin ATPase even in the presence of Ca2+. The present FRET measurements provide structural evidence for three states of thin filaments (relaxed, Ca2+-induced or closed, and S1-induced or open states) for the regulation mechanism of skeletal muscle contraction.  相似文献   

17.
Interaction of myosin with actin in striated muscle is controlled by Ca2+ via thin filament associated proteins: troponin and tropomyosin. In cardiac muscle there is a whole pattern of myosin and tropomyosin isoforms. The aim of the current work is to study regulatory effect of tropomyosin on sliding velocity of actin filaments in the in vitro motility assay over cardiac isomyosins. It was found that tropomyosins of different content of α- and β-chains being added to actin filament effects the sliding velocity of filaments in different ways. On the other hand the velocity of filaments with the same tropomyosins depends on both heavy and light chains isoforms of cardiac myosin.  相似文献   

18.
The regulation of muscle contraction by calcium involves interactions among actin filaments, myosin-S1, tropomyosin (Tm), and troponin (Tn). We have extended our previous model in which the TmTn regulatory units are treated as a continuous flexible chain, and applied it to transient kinetic data. We have measured the time course of myosin-S1 binding to actin-Tm-Tn filaments in solution at various calcium levels with [actin]/[myosin] ratios of 10 and 0.1, which exhibit modest slowing as [Ca2+] is reduced and a lag phase at low calcium. These observations can be explained if myosin binds to actin in two steps, where the first step is rate-limiting and blocked by TmTnI at low calcium, and the second step is fast, reversible, and controlled by the neighboring configuration of coupled tropomyosin-troponin units. The model can describe the calcium dependence of the observed myosin binding reactions and predicts cooperative calcium binding to TnC with competition between actin and Ca-TnC for the binding of TnI. Implications for theories of thin-filament regulation in muscle are discussed.  相似文献   

19.
α-Tropomyosin (αTm) is central to Ca2+-regulation of cardiac muscle contraction. The familial hypertrophic cardiomyopathy mutation αTm E180G enhances Ca2+-sensitivity in functional assays. To investigate the molecular basis, we imaged single molecules of human cardiac αTm E180G by direct probe atomic force microscopy. Analyses of tangent angles along molecular contours yielded persistence length corresponding to ∼35% increase in flexibility compared to wild-type. Increased flexibility of the mutant was confirmed by fitting end-to-end length distributions to the worm-like chain model. This marked increase in flexibility can significantly impact systolic and possibly diastolic phases of cardiac contraction, ultimately leading to hypertrophy.  相似文献   

20.
In vertebrate striated muscle, troponon-tropomyosin is responsible, in part, not only for transducing the effect of calcium on contractile protein activation, but also for inhibiting actin and myosin interaction when calcium is absent. The regulatory troponin (Tn) complex displays several molecular and calcium binding variations in cardiac muscles of different species and undergoes genetic changes with development and in various pathologic states.Extensive reviews on the role of tropomyosin (Tm) and Tn in the regulation of striated muscle contraction have been published describing the molecular mechanisms involved in contractile protein regulation. In our studies, we have found an increase in Mg2+ ATPase activity in cardiac myofibrils from dystrophic hamsters and in rats with chronic coronary artery narrowing. The abnormalities in myofibrillar ATPase activity from cardiomyopathic hamsters were largely corrected by recombining the preparations with a TnTm, complex isolated from normal hamsters indicating that the TnTm, may play a major role in altered myocardial function. We have also observed down regulation of Ca2+ Mg2+ ATPase of myofibrils from hypertrophic guinea pig hearts, myocardial infarcted rats and diabetic-hypertensive rat hearts. In myosin from diabetic rats, this abnormality was substantially corrected by adding troponin-tropomyosin complex from control hearts. All of these disease models are associated with decreased ATPase activities of pure myosin and in the case of rat and hamster models, shifts of myosin, heavy chain from alpha to beta predominate.In summary, there are three main troponin subunit components which might alter myofibrillar function however, very few direct links of molecular alterations in the regulatory proteins to physiologic and pathologic function have been demonstrated so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号