首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study investigated links between seed production by two species of Miconia (Melastomataceae), whose seeds are dispersed by birds, and later stages of recruitment in lowland forests of eastern Ecuador. Seed dispersal and survival in later stages are crucial for understanding and predicting patterns of plant population dynamics as well as for understanding patterns of diversity in tropical forests. A major goal was to determine if the spatial template of seed deposition established by birds predicted probability of recruitment. We used observational and experimental approaches to compare patterns of recruitment in Miconia fosteri and M. serrulata. We calculated probabilities of transition between successive stages of recruitment for each species in three habitats. The number of plants with fruit, number of fruits removed, and, to a lesser extent, patterns of seed deposition varied between species and among habitats, whereas seed survival, germination, and establishment showed little variation among habitats. The location of seed deposition directly influenced the cumulative probabilities of survival. Among-habitat differences in the probabilities of recruitment set by seed deposition were not modified by later stages, although probability of recruitment was 2.5 times higher for M. serrulata than for M. fosteri after 1 year. The more critical stages for recruitment were seed removal and deposition. Our results from multiple life-cycle stages suggest that habitat associations among plants that reach reproductive maturity become established at early life stages and were mostly a consequence of seed dispersal by birds. These results differ from those obtained in temperate zones and suggest fundamental differences in the importance of recruitment processes. Dispersers, such as manakins, play significant roles in recruitment and population dynamics of M. fosteri, M. serrulata and numerous other understory plants of Neotropical forests. Their role in plant recruitment could be much greater than previously considered in megadiverse tropical forests. Thus, loss of dispersers could have long-term and far-reaching implications for maintenance of diversity.  相似文献   

2.
We studied the efficiency (proportion of the crop removed) and quantitative effectiveness (number of fruits removed) of dispersal of Miconia fosteri and M. serrulata (Melastomataceae) seeds by birds in lowland tropical wet forest of Ecuador. Specifically, we examined variation in fruit removal in order to reveal the spatial scale at which crop size influences seed dispersal outcome of individual plants, and to evaluate how the effect of crop size on plant dispersal success may be affected by conspecific fruit abundance and by the spatial distribution of frugivore abundance. We established two 9-ha plots in undisturbed terra-firme understory, where six manakin species (Pipridae) disperse most seeds of these two plant species. Mean levels of fruit removal were low for both species, with high variability among plants. In general, plants with larger crop sizes experienced greater efficiency and effectiveness of fruit removal than plants with smaller crops. Fruit removal, however, was also influenced by microhabitat, such as local topography and local neighborhood. Fruit-rich and disperser-rich patches overlapped spatially for M. fosteri but not M. serrulata, nonetheless fruit removal of M. serrulata was still much greater in fruit-rich patches. Fruit removal from individual plants did not decrease in patches with many fruiting conspecifics and, in fact, removal effectiveness was enhanced for M. fosteri with small crop sizes when such plants were in patches with more conspecifics. These results suggest that benefits of attracting dispersers to a patch balanced or outweighed the costs of competition for dispersers. Spatial pattern of fruit removal, a measure of plant fitness, depended on a complex interaction among plant traits, spatial patterns of plant distribution, and disperser behavior.  相似文献   

3.
Seed dispersal, a key process in terrestrial landscapes, is increasingly important in the face of habitat fragmentation and global climate change. Seed dispersal is also notoriously difficult to characterize, especially in species rich and spatially complex tropical forests. We contrasted assemblages of biotically dispersed seeds collected from four sites using two methods: deposition into seed traps and interception by the capture of frugivorous birds. We also compared seed deposition and interception with local fruit production. Species accumulation curves for seeds deposited in seed traps began to level off sooner than curves for seeds collected from birds captured in mist nets, and extrapolation showed significantly greater estimated species richness for seeds collected from birds than for those deposited in traps. Assemblages from birds and from traps at each site were quite different, with an abundance‐based similarity index of 0.64; this dissimilarity increases if bat‐dispersed seeds are included in the analysis. Common bird‐dispersed species were retrieved from both mist‐netted birds and from seed traps, but numerous locally fruiting understory species were recovered only from birds. We conclude that the sampling of seeds carried by birds provides a valuable complement to other methods of studying seed dispersal in species‐rich tropical forests by revealing relationships between specific dispersers and their seed plants and by creating a more complete account of species diversity of seeds being transported at a given site.  相似文献   

4.
Dispersal by frugivorous birds facilitates invasion by many exotic plants. We measured the seed rain of ornithochorous native and exotic plants at three habitats of a fragmented landscape of the northeastern United States for 1 year. We studied maple-beech forests, old fields, and abandoned conifer plantations. Across all sites we collected 2,196 ornithochorous seeds, including seeds from six exotic species and 10 native species. The majority (90%) of collected seeds were from exotic species. Seed dispersal was broadly similar among habitats, though seed rain of exotic species was higher in old fields than forested habitats. Seed rain was not strongly influenced by artificial perches for most species. However, seeds of exotic species were more commonly found in traps under an artificial perch in old fields. Seed rains for the exotic Elaeagnus umbellata, Rhamnus cathartica, and Rosa multiflora were positively associated with local density of mature plants. Seed rain of R. cathartica was positively associated with abundance of seedlings but not saplings, suggesting that post-dispersal mortality was important. Seed dispersal of the exotic Lonicera spp. was high in all habitats, accounting for 66% of all seeds collected. With the exception of Lonicera spp., seed rain of common exotic invaders was affected by the abundance of seed sources, and these species might be effectively controlled by elimination of local fruiting plants. Fruits of Lonicera morrowii, which has extensively invaded our area, are apparently a common component in the diet of frugivores.  相似文献   

5.
Barriers to establishing native plant communities on former pasture include dominance by a single planted species, hydrologic and edaphic alteration, and native species propagule limitation. Establishment may be dispersal‐limited (propagules do not arrive at the site), microsite‐limited (areas suitable for seedling emergence and survival do not exist), or both. Successful restoration strategies hinge on identifying and addressing critical limitations. We examined seed and microsite limitation to establishment of a native wildflower (Coreopsis lanceolata ) in a former pasture dominated by Paspalum notatum (bahiagrass). We determined the relative and interactive effects of microsite (irrigation and disturbance) and seed limitation on C. lanceolata establishment. We tested (1) irrigation (none, pre‐seeding, and pre‐ and post‐seeding), (2) disturbance (none, sethoxydim, glyphosate, and topsoil removal), and (3) C. lanceolata seeding rate (three seeding densities). Applying glyphosate before seeding increased C. lanceolata establishment compared to other disturbance treatments. Ultimately, C. lanceolata establishment was not affected by irrigation. Coreopsis lanceolata establishment was limited when seeded at 100 live seeds/m2 but not at 600 or 1100 live seeds/m2. Seed and microsite availability interactively affected C. lanceolata establishment, in that microsite limitation was biologically relevant only when a minimum number of seeds were present. In practice, both seed and microsite requirements must be met for successful establishment, and increasing the availability of seeds or microsites does not compensate for limitations of the other. Here, it is the relative importance of seed and microsite limitations that drives plant establishment; these limitations do not represent a simple dichotomy.  相似文献   

6.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

7.
Seed Rain and Seed Limitation in a Planted Gallery Forest in Brazil   总被引:1,自引:0,他引:1  
With seeds collected monthly during one year from 53 1‐m2 seed traps, we investigated the seed rain and seed limitation in a gallery forest planted in 1994 in SE Brazil. Contrasting animal‐ (zoochorous) and wind‐dispersed (anemochorous) plants we investigated (1) which aspects of the composition and structure of the vegetation influence the abundance and species richness of the seed rain; (2) if such influences differ between zoochorous and anemochorous seeds; (3) if the abundance and richness of the seed rain sampled under zoochorous and nonzoochorous plant species differ; and (4) if seed limitation (given by the proportion of sites to which seeds were not dispersed) differs between zoochorous and anemochorous plant species, and also between species that have been planted and those that further colonized the area (colonists). Seed rain was intense and dominated by anemochorous species. The overall seed rain was not influenced by the vegetation parameters we analyzed (canopy height and cover, plant size, abundance, and richness) or by the plant species above the seed trap. The abundance and richness of zoochorous seeds in a given spot was influenced by the abundance and richness of zoochorous plants in its immediate vicinity. Seed limitation was higher for anemochorous than zoochorous species and higher for planted than for colonist species. We concluded with recommendations for the initial establishment of a planted forest, including the homogeneous distribution of zoochorous plants to permit a spatially homogeneous zoochorous seedfall, which will likely enhance the chances of survival and successful establishment of seeds.  相似文献   

8.
Abstract. Seedling densities on the forest floor and on elevated microsites (logs and stumps) were compared for eight woody species in a temperate rain forest in southern Chile. Degree of association with elevated microsites varied significantly between species, showed no systematic relationship with reported shade tolerance, but was significantly negatively correlated with seed mass. Large-seeded Podocarpus nubigena established preferentially on undisturbed forest floor sites, whereas seedlings of small-seeded species such as Nothofagus nitida and Laurelia philippiana were found mainly on fallen logs and stumps. The abundance of large seedlings and saplings of N. nitida on logs/stumps, and the growth forms of canopy trees, confirm that recruitment of this species occurs mainly on decaying wood. The relationship between seed size and microsite preferences may be caused by effects of seed size on (1) ability to establish in forest floor litter and (2) retention of seeds on logs. Seedling occupancy of logs and stumps varied with state of decay. Few seedlings of any species were present on logs in the early stages of decay. N. nitida established earlier than the other species, attaining maximum abundance on wood in the middle decay classes. Species richness and overall seedling abundance were highest on wood in advanced stages of decay. Seed size differences are suggested as a determinant of differential utilization of forest floor heterogeneity, and hence of plant species coexistence.  相似文献   

9.
Seed predation may reduce recruitment in populations that are limited by the availability of seeds rather than microsites. Fires increase the availability of both seeds and microsites, but in plants that lack a soil- or canopy-stored seed bank, post-fire recruitment is often delayed compared to the majority of species. Pyrogenic flowering species, such as Telopea speciosissima, release their non-dormant seeds more than 1 year after fire, by which time seed predation and the availability of microsites may differ from that experienced by plants recruiting soon after fire. I assessed the role of post-dispersal seed predation in limiting seedling establishment after fire in T. speciosissima, in southeastern Australia. Using a seed-planting experiment, I manipulated vertebrate access to seeds and the combined cover of litter and vegetation within experimental microsites in the 2 years of natural seed fall after a fire. Losses to vertebrate and invertebrate seed predators were rapid and substantial, with 50% of seeds consumed after 2 months in exposed locations and after 5 months when vertebrates were excluded. After 7 months, only 6% of seeds or seedlings survived, even where vertebrates were excluded. Removing litter and vegetation increased the likelihood of seed predation by vertebrates, but had little influence on losses due to invertebrates. Microsites with high-density vegetation and litter cover were more likely to have seed survival or germination than microsites with low-density cover. Recruitment in pyrogenic flowering species may depend upon the release of seeds into locations where dense cover may allow them to escape from vertebrate predators. Even here, conditions suitable for germination must occur soon after seed release for seeds to escape from invertebrate predators. Seed production will also affect recruitment after any one fire, while the ability of some juvenile and most adult plants to resprout after fire buffers populations against rapid declines when there is little successful recruitment.  相似文献   

10.
On the volcanically devastated Pumice Plain of Mount St. Helens, plant species colonized microsites differentially. Peak colonization did not occur in the same microsites as peak establishment and growth. In addition, observed microsite colonization patterns differed between years. Two studies were conducted. The first assessed seedling establishment and growth from seeds sown at different microsites. The second assessed colonization into four microsite types that were constructed on the Pumice Plain. Hypochaeris radicata was the most common species to survive when the same number of seeds of four species were planted; however, Anaphalis margaritacea was the most common colonizer of microsites. Microsites with the largest biomass plants in the first study generally had the highest colonization in the second study. Sites that do not possess features to trap seeds, such as flats and ridges, are not opportune places for a plant to grow since there is little microclimatic or substrate amelioration. Thus, flat microsites had low biomass in the establishment experiment due to the lack of amelioration and contained few plants in the colonization experiment due to a lack of seed trapping mechanisms. These results show that in the primary successional landscape of Mount St. Helens microsites are critical to revegetation dynamics. Changes in the pattern of microsite colonization between years emphasizes the dynamic nature of the landscape and the important influences of climate, substrate amelioration and seed rain to plant establishment.  相似文献   

11.
The dispersal process in plants links adults and their offspring. For frugivore‐dispersed plants, animal behaviour can have a strong effect on plant fitness. Many mistletoes are totally dependent on animals that deposit seeds on suitable hosts and particular branch diameters. We characterised the seed dispersal and seedling establishment of the mistletoe Tristerix corymbosus, which at our study site, is exclusively dispersed by the marsupial Dromiciops gliroides. Mistletoes’ fruits have a viscous pulp that remains in the seed even after dispersal. This substance adheres the seed to the host branch. We estimated host branch availability in the forest and seed deposition (faeces) by the marsupial in the study area. Specifically, the branch suitability factors we assessed were host identity, branch status (alive or dead), branch diameter, height, and canopy cover. Lodged faeces were individually marked and the number of seed deposited within these droppings was counted, and we recorded the number of seedlings with true leaves that had established after 1 year to estimate the probability of seedling establishment. Branch diameter and canopy cover had a significant positive effect on seed deposition probability. Seedling establishment probability decreased with the number of seeds deposited per faeces and with canopy cover. In general, the marsupial deposited mistletoe seeds in microsites that increase the chance of seedling establishment. Thus, the movement behaviour of the marsupial has a positive effect on the regeneration process of this mistletoe species.  相似文献   

12.
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.  相似文献   

13.
Seed predation may cause important seed losses in plant populations, but its impact on the dynamics of populations will depend on the degree of seed or microsite limitations for recruitment. Seed losses will only affect recruitment if it is seed limited. The nature of recruitment limitation (seeds or microsites) is usually ascribed to whole plant populations but it may vary within populations among microhabitats and habitats. Thus, the potential impact of seed predation will also vary within the population, being highest where recruitment is seed limited. The impact to the whole population will depend on the spatial concordance between the intensity of seed predation and that of seed limitation. Recruitment limitations (with seed addition experiments), seed predation (with seed removal experiments), and the dynamics of seed availability in the soil (with soil samples taken both after seed dispersal and before the following dispersal event) of the shrub Corema album (Empetraceae) were investigated in dunes in NW Spain, at microhabitats ‘open ground’, ‘underneath C. album ♀’, and ‘underneath C. album ♂’ at two habitats, sparse and dense scrub. The nature of recruitment limitation (seeds vs. microsites) varied within the population. It was seed limited in the microhabitat ‘open ground’ and microsite limited under shrub cover. The spatial patterns of seedling recruitment were unrelated to seed availability but strongly affected by germination requirements. The spatial discordance between seed availability and recruitment implies a crucial constraint for processes affecting seed availability (seed predation but also e.g., dispersal) to impact recruitment. They will not affect its spatial pattern but only its quantity as long as they act in those sites selected by seeds to germinate. Seed predation was highest underneath mother plants and lowest in open ground. Thus, its potential impact is low, as it is centred where recruitment is not seed limited. This study shows that the analysis of seed predation in relation to recruitment limitations at smaller spatial scales within the population provides more insight to understand its impact.  相似文献   

14.

Background

Knowledge about how frugivory and seed deposition are spatially distributed is valuable to understand the role of dispersers on the structure and dynamics of plant populations. This may be particularly important within anthropogenic areas, where either the patchy distribution of wild plants or the presence of cultivated fleshy-fruits may influence plant-disperser interactions.

Methodology/Principal Findings

We investigated frugivory and spatial patterns of seed deposition by carnivorous mammals in anthropogenic landscapes considering two spatial scales: ‘landscape’ (∼10 km2) and ‘habitat type’ (∼1–2 km2). We sampled carnivore faeces and plant abundance at three contrasting habitats (chestnut woods, mosaics and scrublands), each replicated within three different landscapes. Sixty-five percent of faeces collected (n = 1077) contained seeds, among which wild and cultivated seeds appeared in similar proportions (58% and 53%) despite that cultivated fruiting plants were much less abundant. Seed deposition was spatially structured among both spatial scales being different between fruit types. Whereas the most important source of spatial variation in deposition of wild seeds was the landscape scale, it was the habitat scale for cultivated seeds. At the habitat scale, seeds of wild species were mostly deposited within mosaics while seeds of cultivated species were within chestnut woods and scrublands. Spatial concordance between seed deposition and plant abundance was found only for wild species.

Conclusions/Significance

Spatial patterns of seed deposition by carnivores differed between fruit types and seemed to be modulated by the fleshy-fruited plant assemblages and the behaviour of dispersers. Our results suggest that a strong preference for cultivated fruits by carnivores may influence their spatial foraging behaviour and lower their dispersal services to wild species. However, the high amount of seeds removed within and between habitats suggests that carnivores must play an important role – often overlooked – as ‘restorers’ and ‘habitat shapers’ in anthropogenic areas.  相似文献   

15.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

16.
Seedling recruitment is a multi-phased process involving seed production, dispersal, germination, seedling establishment and subsequent survival. Understanding the factors that determine success at each stage of this process is of particular interest to scientists and managers seeking to understand how invasive species spread and persist, and identify critical stages for management. To understand the factors and processes influencing recruitment of the invasive species Berberis darwinii Hook. (Darwin’s barberry), temporal and spatial patterns of seed dispersal, germination and seedling establishment were examined. Seed dispersal from a large source population was measured over two fruiting seasons, and subsequent patterns of seedling emergence and survival within each cohort were measured. Seed longevity was tested under both natural and artificial conditions. Seeds were widely dispersed by birds, up to 450 m from the source population. Dispersal was essential to seedling establishment, as few seedlings survived beneath the parent canopy. Seeds were relatively short-lived in the soil under both field and glasshouse conditions, with few surviving for more than 1 year. Patterns of newly emerged seedlings largely reflected patterns of seed rain, but seedling survival was significantly affected by distance from source population, seedling density and light environment. These results suggest that recruitment of B. darwinii is dependent on dispersal of seeds to favourable microsites. Management priorities should include the removal of fruiting plants, and seedling control in highlight areas.  相似文献   

17.
Large‐seeded plants may suffer seed dispersal limitation in human‐modified landscapes if seed dispersers are absent or unable to disperse their seeds. We investigated dispersal limitation for the large‐seeded tree Virola surinamensis in a human‐modified landscape in southern Costa Rica. During two fruiting seasons, we monitored crop size, seed removal rates, the number of fruiting conspecifics within 100 m, and feeding visitation rates by frugivores at trees located in high and low forest disturbance conditions. Seed removal rates and the total number of seeds removed were high regardless of the disturbance level, but these parameters increased with tree crop size and decreased with the number of fruiting V. surinamensis trees within a 100 m radius. Trees at low disturbance levels were more likely to be visited by seed dispersers. Black mandibled toucans (Ramphastos ambiguus) and spider monkeys (Ateles geoffroyi) were the most important seed dispersers, based on visitation patterns and seed removal rates. Spider monkey feeding visits were more frequent at high disturbance levels, but the monkeys preferentially visited isolated trees with large yields and surrounded by a low number of fruiting Virola trees within 100 m. Toucan visitation patterns were not constrained by any of the predictors and they visited trees equally across the landscape. We suggest that isolated and highly fecund Virola trees are an important food resource for spider monkeys in human‐modified landscapes and that toucans can provide resilience against seed dispersal limitations for large‐seeded plants in human‐modified landscapes in the absence of hunting.  相似文献   

18.
Abstract. Relationships between seed deposition, size of soil seed banks and some of the environmental factors affecting them were assessed for Calluna vulgaris throughout its altitudinal range (150–960 m a.s.l.) in eastern Scotland. Seed rain was assessed using pitfall traps, collected every 5–10 wk for 3 yr; germinability was determined by laboratory incubation. Seed bank size was estimated, once only, by counting seedlings emerging from soil cores kept for 50 wk in a glasshouse. Seed deposition varied annually, was related to parent plant cover but always declined with altitude, falling sharply above 600 m a.s.l. Seed bank size was more closely correlated with the proportion of organic matter in the soil than with the amount of seed rain. Seed bank sizes declined gradually with altitude but did not differ significantly between four altitudinal zones. The mean density of buried seeds was less than half the mean annual seed rain at sites below 300 m a.s.l. but was over 200 × greater than annual seed rain above 800 m, suggesting that seeds buried at high altitudes remain viable for much longer than those at lower altitudes.  相似文献   

19.
Abstract. Questions: How do physical microsite conditions of microsites affect germination and seedling survival in different successional stages? Do different species germinate in similar microsites in a given successional stage? Location: Coleman Glacier foreland, Mount Baker, Washington State, USA. Methods: Two methods were used to characterize safe sites. 1. Grids of 300 10 cm × 10 cm plots were located in four different age classes on the foreland. 2.105 pairs of plots, with and without seedlings of Abies amabilis, were located in each age class. For each plot we identified all seedlings and all individuals < 1 m tall. Microsite characteristics such as topography and presence of rocks or woody debris were noted for each plot. Microsite characteristics were compared between plots with and without each species. In addition we examined the effect of distance from seed sources on the presence of Alnus viridis seeds and seedlings in a newly disturbed area. Results: In early successional sites, seedlings of several species were positively associated with depressions and presence of rocks, and negatively associated with ridges. Patterns were generally consistent among species. In later succession, seedlings were not significantly associated with any microsite characteristics. For Alnus viridis, seed density decreased with distance from seed sources but seedling density did not. Conclusions: Because of harsh conditions in early succession, physical microsites are important, and most species have similar microsite requirements. In later succession, physical microsites characteristics are not as important and are more variable. Microsites appear to be more important than seed rain in controlling the distribution of Alnus viridis in early succession.  相似文献   

20.
Seed dispersal studies have primarily examined dispersal as a function of distance from the parent tree and/or heterogeneity in dispersal due to animal use of nesting, roosting and sleeping sites. However, non‐random heterogeneity in seed dispersal is also likely to result from the post‐foraging behavior and movement of frugivores which prefer certain trees. To characterize variation in seed rain at fine scales, we studied the dispersal curve of Prunus ceylanica, a primarily bird‐dispersed species. We compared seed rain at conspecifics, heterospecific fruiting trees with similar frugivore assemblages, emergent trees, and the landscape surrounding these trees. Seed rain of P. ceylanica was found to peak globally under the canopy of conspecifics but to peak locally under the canopy and immediate neighborhood of heterospecific fruiting trees. Our results demonstrate that seed rain is highly clumped even at fine spatial scales. A large proportion of seeds are dispersed in specific, localized regions. This variation can have important implications for plant population dynamics and might significantly alter the impact of post‐dispersal processes. Seed dispersal models may need to incorporate this heterogeneity to explain manifestations of spatially explicit dynamics like mixed species ‘orchards’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号