首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cuttings of pea (Pisum sativum L. cv Marma) were treated with 1-aminocyclopropane-l-carboxylic acid (ACC). This treatment caused increased ethylene production and reduction of root formation. The effect of 0.1 mM ACC on the level of endogenous indole-3-acetic acid (IAA) in the rooting zone and in the shoot apex was analyzed by gas chromatography-single ion monitoring mass spectrometry or by high pressure liquid chromatography with fluorimetric detection (HPLC). Concentrations of indole-3-acetylaspartic acid (IAAsp) in the stem bases were also determined using HPLC. The ACC treatment had little effect on the IAA level in the base measured after 24 h, but caused a considerable decrease during the 3 following days. IAAsp increased in the base on days 1, 2 and 3 and then declined. The build up of IAAsp in the base was not affected by ACC during the first two days of the treatment, but later this conjugate decreased more rapidly than in controls. No effect of the ACC treatment was found on the level of IAA in the apex. IAA (1 µM) applied to the cuttings during 24 h reduced the number of roots formed. The possibility that IAA-induced ethylene is involved in this response was investigated.Our results support earlier evidence that the inhibitory effect of ethylene on rooting in pea cuttings is due to decreased IAA levels in the rooting zone. The inhibitory effect of applied IAA is obtained if the internal IAA level is maintained high during the first 24 h, whereas stimulation of rooting occurs if the internal IAA level remains high during an extended period of time. Our results do not support the suggestion that ethylene mediates the inhibitory effect of applied IAA.  相似文献   

2.
In vitro culture of Chenopodium murale L. (ecotype 197) green and herbicide SAN 9789 - treated "white" plants was established and the effects of benzylaminopurine (BAP), indole-3-acetic acid (IAA) and gibberellic acid (GA3) on growth and flowering were tested. Green plants did not flower on glucose free media, while 17 % of plants flowered on 5 % glucose-containing medium. SAN 9789 (10–5 M) inhibited growth and flowering. BAP and IAA (0.1 – 5 mg dm–3) also inhibited growth and flowering of green and "white" plants. GA3 (10 mg dm–3) stimulated leaf development in green plants, but had no significant effect on "white" plants, and stimulated flowering of green (41 %) and "white" (33 %) plants.  相似文献   

3.
Micropropagated shoots of Stackhousia tryonii were exposed (individually or in combination) to indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthalene acetic acid (NAA) at concentrations 1, 2 or 4 g dm–3 with the view to induce rooting under ex vitro conditions. The treated microshoots were grown in a mist room for four weeks and assessed for survival, rooting percentage, number of roots and root length. The results showed that IBA at 2 g dm–3 was most effective in inducing roots. Mixing of two or more auxins markedly reduced rooting percentage indicating antagonistic effects. The results demonstrated the potential of combining ex vitro rooting and hardening in one step, with view to reducing costs of multiplying plants via micropropagation.  相似文献   

4.
Rooting in terminal shoot and lateral shoot cuttings from 10-year-old elite trees of Casuarina equisetifolia L. in different sex groups was achieved after 20 days when the basal ends of the cuttings were dipped for 3 h in 20 ppm indole-3-butyric acid (IBA). Shoots derived from male plants rooted better than their female and monoecious counterparts, and the lateral shoots were more responsive to rooting than the terminal shoots. During rooting, the metabolic activities varied in both lateral shoot and terminal shoot cuttings derived from plants under different sex groups. Peroxidase and polyphenoloxidase activities were high during root initiation and showed a sharp decline thereafter. The polyphenoloxidase activity was higher in the lateral shoot than the terminal shoot cuttings. The rooted plantlets survived and established well in the field.Abbreviations IAA indole-3-acetic acid - IBA indole-3-butyric acid - NAA 1-naphthaleneacetic acid - PVP polyvinylpyrrolidone  相似文献   

5.
Changes in the levels of [14C]indole-3-acetic acid (IAA) and [14C]indole-acetylaspartic acid (IAAsp) were examined during adventitious root formation in mung bean (Vigna radiata [L.] R. Wilcz. `Berken') stem cuttings. IAAsp was identified by GC-MS as the primary conjugate in IAA-treated cuttings. During root formation in IAA-treated cuttings, the level of [14C]IAAsp increased rapidly the first day and then declined; [14C]IAA was rapidly metabolized and not detected after 12 hours.  相似文献   

6.
Glasshouse experiments were conducted to evaluate the influence of L-TRP in comparison with indole-3-acetamide (IAM), tryptophol (TOL) and indole-3-acetic acid (IAA) on the growth of Zea mays L. var. Early Sunglow. L-TRP (25 to 2.5×10–5 mg kg–1 soil), IAM (22 to 2.2×10–5 mg kg–1 soil), TOL (20 to 2.0×10–5 mg kg–1 soil), and IAA (22 to 2.2×10–5 mg kg–1 soil) were applied as a soil drench to established uniform seedlings. All treatments were applied in a completely randomized design with 10 replicates. IAM had no significant effect on the plant growth parameters. Shoot height, uppermost leaf collar base distance, internodal distance, and shoot dry and fresh weights were significantly improved upon the addition of TOL (2.0×10–2 mg kg–1 soil), however, the highest concentration (20 mg kg–1 soil) caused a 14.6% reduction in leaf width. L-TRP (2.5×10–3 mg kg-1 soil) also had a significant influence on shoot height, uppermost leaf collar base distance, internodal distance and fresh weight of shoot compared with the control. The highest concentration of L-TRP (25=mg kg–1 soil) had a negative effect on leaf width and dry weight of the shoot. The most pronounced response on the corn growth parameters was observed with the application of IAA at lower concentrations (2.2×10–5 to 2.2×10–2 mg kg–1 soil) specifically improving root growth. The highest concentration (22 mg kg–1 soil) of IAA had a significant negative effect on plant height, leaf width, stem diameter, shoot fresh and dry weight. These findings indicate that L-TRP applied at the appropriate concentrations can have positive effects on corn growth comparable to pure auxins (TOL and IAA).  相似文献   

7.
Quantification of endogenous IAA and lAAsp was carried out duringadventitious root formation in avocado microcuttings. Both auxinand conjugate were monitored in control cuttings (rooted inthe absence of auxin) as well as in cuttings treated with arooting promotor (IBA) or an auxin transport inhibitor (TIBA).Additionally, a histological study to follow root differentiationwas carried out. In control cuttings IAA levels remained constantthroughout the rooting process, however, in IB A-treated cuttingsIAA levels increased 2-fold during the first 6 d. Addition of200 µM TIBA induced a slight decrease of IAA levels andinhibited root formation. As for IAAsp levels, both control and IBA-treated cuttings showeda big increase before root differentiation occurred and as theprocess went on, a progressive decrease took place. However,in TIBA-treated cuttings IAAsp levels not only did not increasebut diminished progressively during the process. The role ofauxin conjugates during the rooting process of avocado is discussed. Key words: Avocado, IAA, IAAsp, rooting  相似文献   

8.
Levels of endogenous indole-3-acetic acid (IAA) and indole-3-acetylaspartic acid (IAAsp) were monitored in various parts of leafy cuttings of pea ( Pisum sativum L. cv. Marma) during the course of adventitious root formation. IAA and IAAsp were identified by combined gas chromatography—mass spectrometry, and the quantitations were performed by means of high performance liquid chromatography with spectrofluorometric detection. IAA levels in the root forming tissue of the stem base, the upper part of the stem base (where no roots were formed), and the shoot apex remained constant during the period studied and were similar to levels occurring in the intact seedling. A reduction of the IAA level in the root regenerating zone, achieved by removing the shoot apex, resulted in almost complete inhibition of root formation. The IAAsp level in the shoot apex also remained constant, whereas in the stem base it increased 6-fold during the first 3 days. These results show that root initiation may occur without increased IAA levels in the root regenerating zone. It is concluded that the steady-state concentration is maintained by basipetal IAA transport from the shoot apex and by conjugation of excessive IAA with aspartic acid, thereby preventing accumulation of IAA in the tissue.  相似文献   

9.
The process of physiological ageing in woody plants is a very important factor influencing adventitious rooting. However, there is a lack of knowledge of biochemical backgrounds triggering ageing and consequently, rhizogenesis. Experiments with Prunus subhirtella ‘Autumnalis’ leafy cuttings of three different physiological ages (adult (over 40-year-old stock plants), semi-adult (5-year-old cutting plants) and juvenile (5-year-old in vitro plants)) were conducted in 2009. Half of the cuttings were banded ca. 3 cm above the bottom of the cutting with aluminum wire prior to insertion into the substrate to block the polar auxin transport. IBA, which was exogenously applied to the cuttings, could only be detected in the base of the cuttings on the first day after severance. Juvenile cuttings tended to have the highest values, but the effect was age specific. Later, the detection was not possible, regardless of the age. The IAA profile in cutting bases was similar for all physiological ages, reaching the peak on the first day after severance. Juvenile cuttings, in which the stems had been banded before insertion, contained more IAA in their bases on day 1 compared to the stems, which were not banded. These cuttings presumably transported absorbed auxin mainly via phloem, and not via mass flow like semi-adult and adult cuttings, where IAA concentrations were similar or even greater in non-banded cuttings compared to banded ones. These cuttings also tended to exhibit the best rooting results. The IAA-Asp accumulation was especially strong in adult cuttings, which contained significantly more aspartate on the first and third days after severance when compared with semi-adult and juvenile cuttings.  相似文献   

10.
Indole-3-butyric acid (IBA) greatly enhanced the rooting of an early-flowering variety of protea, Leucadendron discolor, but had very little effect on a late-flowering variety. IBA transport and metabolism were studied in both varieties after incubating the cuttings in 3H-IBA. More of the radio-label was transported to the leaves of the easy-to-root variety than the difficult-to-root (35–45% and 10%, respectively). IBA was metabolized rapidly by the cuttings of both varieties and after 24 h most of the label was in the new metabolite. However, free IBA (about 10%) was present in the cuttings during the whole period up to the time of root emergence (4 weeks). More free IBA was accumulated in the base of easy-to-root cuttings, while in the difficult-to-root variety most of the IBA was found in the leaves. The metabolite was identified tentatively as an ester conjugate with a glucose. It is possible that IBA-glucose serves as a source for free IBA, and the difference between the varieties is a consequence of the free IBA which is released, transported and accumulated in the site of a root formation.  相似文献   

11.
Auxin conjugates play a role in the regulation of free indole-3-acetic acid (IAA) content in plants. Not much is known about the enzymes involved in either conjugate synthesis or hydrolysis. In this study we have isolated and characterized an auxin conjugate hydrolase from Chinese cabbage seedlings and investigated it during the development of both the Chinese cabbage plants and the clubroot disease. The hydrolase isolated from light- and dark-grown seedlings accepted the amide conjugates indole-3-acetic acid-alanine (IAAla), IAA-phenylalanine (IAPhe), but not IAA-aspartate (IAAsp) as substrates. We also found a substantial amount of hydrolysis of an ester conjugate (IAA-glucose, IAGlu) in our enzyme preparation. The tentative reaction product IAA was identified by HPLC and subsequent GC-MS analysis. The pH optima for the different substrates were not identical, suggesting several hydrolase isoforms. After gel filtration chromatography we found at least two peaks containing different hydrolase isoforms. The isoform, which converted IAGlu to IAA, exhibited a molecular mass of ca 63 kDa, and an isoform of ca 21 kDa converted IAAla and IAPhe. The increased free IAA content in clubroot-diseased roots of Brassicaceae can be due to either de novo synthesis or release of IAA from conjugates. To answer this question free, ester- and amide-bound IAA was measured in 24- and 30-day-old leaves and roots of healthy and Plasmodiophora brassicae-infected Chinese cabbage, and the hydrolase activity with different substrates measured in the same tissues. The amide conjugates were dramatically enhanced in infected roots, whereas free IAA was only slightly enhanced compared to the control tissue. Hydrolase activity was also enhanced in clubbed roots, but the substrate specificity differed from that found in the seedlings. Especially, IAAsp hydrolysis was induced after inoculation with P. brassicae. We conclude that different auxin conjugates can be hydrolyzed at different developmental stages or under stress.  相似文献   

12.
Mung bean hypocotyl cuttings were treated with indole-3-butyric acid (IBA), 3-(benzo[b]selenienyl)acetic acid (BSAA) and 5,6-dichloroindole-3-acetic acid methyl ester (5,6-Cl2-IAA-Me) at different concentrations, respectively. Each chemical produced the maximum number of adventitious roots at a different concentration. Compared with IBA treatment, 5,6-Cl2-IAA-Me and BSAA treatments significantly increased root numbers on hypocotyl cuttings at lower concentration, particularly of 5,6-Cl2-IAA-Me treatment. Combinations of paclobutrazol (PB) with either 5,6-Cl2-IAA-Me or BSAA significantly stimulated the production of more adventitious roots than either chemical alone or combined. Capillary electrophoresis analysis have shown that the levels of IAA, IBA and BSAA in IBA plus PB or BSAA plus PB treatments were higher than those of IBA or BSAA alone. It was suggested that the cause of the synergistic effect of IBA (or BSAA) plus PB treatment might be due to increased endogenous auxin level. The activities of peroxidase and IAA oxidase in the rooting zone coincided with root development, indicating that the activities of these two enzymes were positively correlated to rooting. Peroxidase and IAA oxidase activity in all treatments started 24 h and 12 h after cutting, respectively. It is suggested that the major role of IAA oxidase differed from that of peroxidase in adventitious root formation.  相似文献   

13.
High specific activity [3H]indole-3-acetic acid (IAA) was applied directly to root nodules of intact pea plants. After 24 h, radioactivity was detected in all plant tissues. In nodule and root tissue, only 2–3% of3H remained as IAA, and analysis by thin layer chromatography suggested that indole-3-acetyl-L-aspartic acid (IAAsp) was a major metabolite. The occurrence of IAAsp in pea root and nodule tissue was confirmed unequivocally by gas chromatography-mass spectrometry (GC-MS). The following endogenous indole compounds were also unequivocally identified in pea root nodules by GC-MS: IAA, indole-3-pyruvic acid, indole-3-lactic acid, indole-3-propionic acid, indole-3-butyric acid, and indole-3-carboxylic acid. Evidence of the occurrence of indole-3-methanol was also obtained. With the exception of IAA and indole-3-propionic acid, these compounds have not previously been unequivocally identified in a higher plant tissue.  相似文献   

14.
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA.  相似文献   

15.
Stock mother plants have gained importance in the process of adventitious rooting of woody plants in recent years. The present study reveals the role of the cutting position from a stock mother plant for subsequent rooting. Cuttings of Prunus subhirtella Miq. var. Autumnalis which originated from suckers at the bottom of a tree developed a rooting system of better quality (rooted cutting without callus formation, more main roots) compared to cuttings which originated from shoots at the top of a tree. The latter accumulated significantly more indole-3-acetic acid (IAA) with the highest value of 25.37 μg g?1 FW on the severance date. These cuttings also contained more indole-3-acetyl-aspartate (IAA-Asp) on the second day after severance with the highest value of 4875.95 μg g?1 FW compared to cuttings from the bottom-deriving suckers. The latter metabolised IAA primarily via 2-oxindole-3-acetic acid (oxIAA) and indole-3-methanol because the concentrations of these compounds increased at the base of these cuttings. The highest concentration of oxIAA, 8.3 mg ekv. IAA g?1 FW, was measured 1 h after severance in cuttings from the bottom-derived suckers. With 590.5 ng ekv IAAg?1 FW, the indole-3-methanol values were also significantly higher in the cuttings from the bottom shoots compared with cuttings from the top of the tree.  相似文献   

16.
Hayat  S.  Ahmad  A.  Mobin  M.  Fariduddin  Q.  Azam  Z.M. 《Photosynthetica》2001,39(1):111-114
The leaves of 30-d-old plants of Brassica juncea Czern & Coss cv. Varuna were sprayed with 10–6 M aqueous solutions of indole-3-yl-acetic acid (IAA), gibberellic acid (GA3), kinetin (KIN), and abscisic acid (ABA) or 10–8 M of 28-homobrassinolide (HBR). All the phytohormones, except ABA, improved the vegetative growth and seed yield at harvest, compared with those sprayed with deionised water (control). HBR was most prominent in its effect, generating 32, 30, 36, 70, 25, and 29 % higher values for dry mass, chlorophyll content, carbonic anhydrase (E.C. 4.2.1.1) activity, and net photosynthetic rate in 60-d-old plants, pods per plant, and seed yield at harvest, over the control, respectively. The order of response to various hormones was HBR > GA3 > IAA > KIN > control > ABA.  相似文献   

17.
Abstract Seedlings of Pinus sylvestris L. were grown under controlled conditions (temperature 20°C, photoperiod 17 h) at two irradiances, 8 or 40 W m-2. Hypocotyl cuttings were excised and rooted at different irradiances in tap water solutions of indolebutyric acid (IBA). The fastest rooting and highest rooting percentage were obtained with cuttings from stock plants grown at 8 W m-2 and treated with 10-5M IBA for 21 days. The concentration of 10-4M IBA inhibited root formation. In comparable treatments rooting was always better in cuttings from stock plants grown at 8 W m-2 than in cuttings from stock plants grown at 40 W m-2. The irradiance during the rooting period had only a minor influence on rooting. When cuttings from plants irradiated with 40 W m-2 were treated with 10-5M IBA for 21 days the rooting percentage almost reached the same level as in untreated cuttings from stock plants given 8 W m-2. In cuttings treated with IBA during the whole rooting period, rooting was depressed in comparison to untreated cuttings. Aeration of the 10-4M IBA solution increased the rooting percentage, but aeration had no effect on untreated cuttings and on cuttings treated with lower IBA concentrations.  相似文献   

18.
Nanocarriers for encapsulation and sustained release of agrochemicals such as auxins have emerged as an attractive strategy to provide enhanced bioavailability and efficacy for improved crop yields and nutrition quality. Here, a comparative study was conducted on the effectiveness of chitosan-as a biopolymeric nanocarrier- and silver-as a metallic nanocarrier- on in vitro adventitious rooting potential of microcuttings in apple rootstocks, for the first time. Auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) loaded silver (nAg) or chitosan nanoparticles (nChi) were synthesized. Scanning electron microscopy and transmission electron microscopy studies showed the spherical shape of the nanoparticles. The average particle size of IAA-nChi was 167.5 ± 0.1 nm while that of IBA-nChi was 123.2 ± 2.6 nm. The hydrodynamic diameter of the nAg-IAA and nAg-IBA particles were measured as 93.66 ± 5 nm and 71.41 ± 3 nm, respectively. Fourier transform infrared spectroscopy analyses confirmed the encapsulation of IAA or IBA in the chitosan nanoparticles. Meanwhile, the characteristic peaks of IAA or IBA were detected on silver nanoparticles. In-vitro adventitious rooting of microcuttings of Malling Merton 106 (MM 106) was significantly higher both in chitosan and silver nanoparticles loaded with IAA or IBA (91.7%–62.5%) compared to free IAA or IBA applications (50.0%–33.3%), except for 2.0 mg L–1 IBA (66.7%). However, the application of 2 mg L–1 IBA and IBA-nChi at all concentrations caused an undesirable large callus development.  相似文献   

19.
Young maize plants, grown hydroponically, were supplied with 1/10 the optimal amount of iron (0.75 mg dm–3). Foliar treatments with solutions, containing N6-benzyladenine (BA), indole-3-acetic acid (IAA) or (2-chloroethyl)-trimethylammoniumchloride (CCC) were conducted after chlorosis had been well manifested. Changes in growth, chlorophyll content, rate of photosynthesis, catalase and peroxidase activities in leaves, and the contents of Fe, Cu, Zn, Mn, and P in leaves were recorded. Growth regulators improved (CCC, IAA) or aggravated (BA) the physiological state of chlorotic plants. Their effect might be explained by changes in Fe transport towards the leaves, by increased efficiency of Fe utilization, and by effects on plant metabolism not involving Fe.  相似文献   

20.
Initiation of roots on hypocotyl cuttings of Pinus contorta in vitro   总被引:1,自引:0,他引:1  
The origin of roots and wound tissue after treatments for induction of roots on hypocotyl cuttings of three-week-old Pinus contorta Dougl. ex Loud, is discussed. The cuttings were cultured in vitro and treated with 1.2 μ M to 1.5 M IBA (indole-3-butyric acid) for 6 h to 10 days. The control, which was not treated with IBA developed a wound tissue from which roots formed. Cuttings treated with IBA developed roots directly from the hypocotyl. Direct rooting was faster than indirect rooting via a wound tissue. Rooting was considered to be optimal if more than 80% of the cuttings rooted within 19 days and half of the cuttings which possessed roots after one month had acquired them within 14 days. This type of rooting was obtained after treatment with either 80 μ M IBA for 4 to 6 days or 1.25 to 5.0 m M IBA for 6 h. Suboptimal treatments gave lower rooting percentages and superoptimal treatments resulted in delayed rooting. In IBA-treated cuttings, large increases in mitotic activity (number of mitoses per mm hypocotyl) were found in the pericycle and parenchyma inside endodermis. However, the control also had similar mitotic activities as the IBA-treated cuttings but closer to the cut surface. This led us to the conclusion that similar tissues may produce either wound tissue or roots. Almost all roots obtained through direct rooting originated outside resin ducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号