首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In all photosynthetic organisms, chlorophylls function as light‐absorbing photopigments allowing the efficient harvesting of light energy. Chlorophyll biosynthesis recurs in similar ways in anoxygenic phototrophic proteobacteria as well as oxygenic phototrophic cyanobacteria and plants. Here, the biocatalytic conversion of protochlorophyllide to chlorophyllide is catalysed by evolutionary and structurally distinct protochlorophyllide reductases (PORs) in anoxygenic and oxygenic phototrophs. It is commonly assumed that anoxygenic phototrophs only contain oxygen‐sensitive dark‐operative PORs (DPORs), which catalyse protochlorophyllide reduction independent of the presence of light. In contrast, oxygenic phototrophs additionally (or exclusively) possess oxygen‐insensitive but light‐dependent PORs (LPORs). Based on this observation it was suggested that light‐dependent protochlorophyllide reduction first emerged as a consequence of increased atmospheric oxygen levels caused by oxygenic photosynthesis in cyanobacteria. Here, we provide experimental evidence for the presence of an LPOR in the anoxygenic phototrophic α‐proteobacterium Dinoroseobacter shibae DFL12T. In vitro and in vivo functional assays unequivocally prove light‐dependent protochlorophyllide reduction by this enzyme and reveal that LPORs are not restricted to cyanobacteria and plants. Sequence‐based phylogenetic analyses reconcile our findings with current hypotheses about the evolution of LPORs by suggesting that the light‐dependent enzyme of D. shibae DFL12T might have been obtained from cyanobacteria by horizontal gene transfer.  相似文献   

2.
One of the final reactions of chlorophyll (Chl) biosynthesis, e.g: photoreduction of protochlorophyllide (Pchlid) to chlorophyllide (Chlid) is a light-induced process in Angiosperm plants and it is catalyzed by light-dependent NADPH-Pchlid oxidoreductase (1.3.1.33; LPOR). In darkness, Chl biosynthesis is stopped at the stage of Pchlid formation. Seedlings and plastids develop according to a different pattern than that observed in the light. Moreover, synthesis of some proteins of the photosynthetic apparatus is inhibited. Light triggers the Pchlid photoreduction to Chlid, which induces the cascade of biochemical reactions and structural changes leading to the assembly of thylakoid membranes. In the present paper, the current knowledge on LPOR protein, mechanism of Pchlid to Chlid photoreduction, the role of lipid structure in etioplasts as well as spectral properties of Pchlid in etiolated seedlings and model systems is summarized.  相似文献   

3.
莲胚芽叶绿素合成对光照的依赖性   总被引:3,自引:0,他引:3  
被子植物的叶绿素合成需要光照,但是莲(Nelumbo nucifera Gaertn.)胚芽却一直被猜测具有在黑暗中合成叶绿素的能力,因为莲胚芽变绿是在四重覆盖物(子叶、种皮、果皮和莲蓬)包被下几乎不大可能秀光的环境中发生的,本实验从正反两个方面否定了这种可能性;首先对处于发育早期的莲蓬进行遮光处理。结果发现莲胚芽虽然可以继续发育,但是它的叶绿素合成却受到严重抑制。积累了大量合成叶绿素的前体,并且这些前体主要与依赖光的原叶绿素酸酯氧还酶(LPOR)结合在一起;其次不依赖光的原叶绿素酸酯氧还酶(DPOR)的编码基因在物种间高度保守,但是用PCR的方法在功基因组中却扩增不同源序列,表明莲胚芽不大可能具有在黑暗中合成叶绿素所必需的酶。两方面实验结果表明,莲胚芽的叶绿素合成只能通过依赖光的途径进行。  相似文献   

4.
The Chlamydomonas reinhardtii chloroplast gene chlL (frxC) is shown to be involved in the light-independent conversion of protochlorophyllide to chlorophyllide. The polypeptide encoded by chlL contains a striking 53% amino acid sequence identity with the bacteriochlorophyll (bch) biosynthesis bchL gene product in the photosynthetic bacterium Rhodobacter capsulatus. In a previous analysis, we demonstrated that bchL was involved in light-independent protochlorophyllide reduction, thereby implicating chlL in light-independent protochlorophyllide reduction in photosynthetic eukaryotes. To perform a functional/mutational analysis of chlL, we utilized particle gun-mediated transformation to disrupt the structural sequence of chlL at its endogenous locus in the chloroplast genome of Chlamydomonas. Transformants for which the multicopy chloroplast genome was homoplasmic for the disrupted chlL allele exhibit a "yellow-in-the-dark" phenotype that we demonstrated to be a result of the dark accumulation of protochlorophyllide. The presence of a chlL homolog in distantly related bacteria and nonflowering land plants, which are thought to be capable of synthesizing chlorophyll in the dark, was also demonstrated by cross-hybridization analysis. In contrast, we observed no cross-hybridization of a probe of chlL to DNA samples from representative angiosperms that require light for chlorophyll synthesis, in support of our conclusion that chlL is involved in light-independent chlorophyll biosynthesis. The role of chlL in protochlorophyllide reduction as well as recent evidence that both light-independent and light-dependent protochlorophyllide reductases may be of bacterial origin are discussed.  相似文献   

5.
Chlorophyll and bacteriochlorophyll biosynthesis requires the two-electron reduction of protochlorophyllide a ringDbya protochlorophyllide oxidoreductase to form chlorophyllide a. A light-dependent (light-dependent Pchlide oxidoreductase (LPOR)) and an unrelated dark operative enzyme (dark operative Pchlide oxidoreductase (DPOR)) are known. DPOR plays an important role in chlorophyll biosynthesis of gymnosperms, mosses, ferns, algae, and photosynthetic bacteria in the absence of light. Although DPOR shares significant amino acid sequence homologies with nitrogenase, only the initial catalytic steps resemble nitrogenase catalysis. Substrate coordination and subsequent [Fe-S] cluster-dependent catalysis were proposed to be unrelated. Here we characterized the first cyanobacterial DPOR consisting of the homodimeric protein complex ChlL(2) and a heterotetrameric protein complex (ChlNB)(2). The ChlL(2) dimer contains one EPR active [4Fe-4S] cluster, whereas the (ChlNB)(2) complex exhibited EPR signals for two [4Fe-4S] clusters with differences in their g values and temperature-dependent relaxation behavior. These findings indicate variations in the geometry of the individual [4Fe-4S] clusters found in (ChlNB)(2). For the analysis of DPOR substrate recognition, 11 synthetic derivatives with altered substituents on the four pyrrole rings and the isocyclic ring plus eight chlorophyll biosynthetic intermediates were tested as DPOR substrates. Although DPOR tolerated minor modifications of the ring substituents on rings A-C, the catalytic target ring D was apparently found to be coordinated with high specificity. Furthermore, protochlorophyllide a, the corresponding [8-vinyl]-derivative and protochlorophyllide b were equally utilized as substrates. Distinct differences from substrate binding by LPOR were observed. Alternative biosynthetic routes for cyanobacterial chlorophyll biosynthesis with regard to the reduction of the C8-vinyl group and the interconversion of a chlorophyll a/b type C7 methyl/formyl group were deduced.  相似文献   

6.
Chlorophylls are the most abundant classes of natural pigments and their biosynthesis is therefore a major metabolic activity in the ecosphere. Two pathways exist for chlorophyll biosynthesis, one taking place in darkness and the other requiring continuous light as a precondition. The key process for Chl synthesis is the reduction of protochlorophyllide (Pchlide). This enzymatic reaction is catalysed by two different enzymes — DPOR (dark-operative Pchlide oxidoreductase) or the structurally distinct LPOR (light-dependent Pchlide oxidoreductase). DPOR which consists of three subunits encoded by three plastid genes in eukaryotes was subject of our study. A short overview of our present knowledge of chlorophyll biosynthesis in Chlamydomonas reinhardtii in comparison with other plants is presented. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

7.
8.
In most oxygenic phototrophs, including cyanobacteria, two independent enzymes catalyze the reduction of protochlorophyllide to chlorophyllide, which is the penultimate step in chlorophyll (Chl) biosynthesis. One is light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) and the second type is dark-operative protochlorophyllide oxidoreductase (DPOR). To clarify the roles of both enzymes, we assessed synthesis and accumulation of Chl-binding proteins in mutants of cyanobacterium Synechocystis PCC 6803 that either completely lack LPOR or possess low levels of the active enzyme due to its ectopic regulatable expression. The LPOR-less mutant grew photoautotrophically in moderate light and contained a maximum of 20 % of the wild-type (WT) Chl level. Both Photosystem II (PSII) and Photosystem I (PSI) were reduced to the same degree. Accumulation of PSII was mostly limited by the synthesis of antennae CP43 and especially CP47 as indicated by the accumulation of reaction center assembly complexes. The phenotype of the LPOR-less mutant was comparable to the strain lacking DPOR that also contained <25 % of the wild-type level of PSII and PSI when cultivated under light-activated heterotrophic growth conditions. However, in the latter case, we detected no reaction center assembly complexes, indicating that synthesis was almost completely inhibited for all Chl-proteins, including the D1 and D2 proteins.  相似文献   

9.
Protochlorophyllide photoreduction   总被引:3,自引:0,他引:3  
  相似文献   

10.
Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen ((1)O(2)). As there is no enzymatic detoxification mechanism available in plants to destroy (1)O(2), its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the (1)O(2) generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of (1)O(2) and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to (1)O(2)-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of genes involved in 5-aminolevulinicacid and tetrapyrrole biosynthesis.  相似文献   

11.
12.
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.  相似文献   

13.
Chlorophyll biosynthesis is catalyzed by two multi subunit enzymes; a light-dependent and a light-independent protochlorophyllide oxidoreductase. The light-independent enzyme consists of three subunits (ChlL, ChlN and ChlB) in photosynthetic bacteria and plastids in which the chlB gene encodes the major subunit that catalyzes the reduction of protochlorophyllide to chlorophyllide. We report here stable integration of the chlB gene from Pinus thunbergii into the chloroplast genome of tobacco. Using helium-driven biolistic gun, transplastomic clones were developed in vitro. The stable integration and homoplasmy for transgenes was confirmed by using PCR and Southern blotting techniques. Nodal cuttings of the homoplasmic transgenic and untransformed wild type shoots were cultured on MS medium in the dark. As expected, shoots developed from the cuttings of the wild type plants in the dark showed etiolated growth with no roots whereas shoots from the cuttings of the transgenic plants developed early and more roots. Upon shifting from dark to light in growth room, leaves of the transgenic shoots showed early development of chlorophyll pigments compared to the wild type shoots. Further, photosynthetically indistinguishable transgenic shoots also showed significant difference in root development from untransformed wild type shoots when cuttings were grown in the light. Therefore, it may be concluded that the chlB gene is involved, directly or indirectly, in the root development of tobacco. Further, the gene promotes early development of chlorophyll pigments, upon illumination from dark, in addition to its role in the light-independent chlorophyll formation when expressed together with subunits L&N in other organisms.  相似文献   

14.
Although the endosymbiotic evolution of chloroplasts through primary and secondary associations is well established, the evolutionary timing and stability of the secondary endosymbiotic events is less well resolved. Heterokonts include both photosynthetic and nonphotosynthetic members and the nonphotosynthetic lineages branch basally in phylogenetic reconstructions. Molecular and morphological data indicate that heterokont chloroplasts evolved via a secondary endosymbiosis, involving a heterotrophic host cell and a photosynthetic ancestor of the red algae and this endosymbiotic event may have preceded the divergence of heterokonts and alveolates. If photosynthesis evolved early in this lineage, nuclear genomes of the nonphotosynthetic groups may contain genes that are not essential to photosynthesis but were derived from the endosymbiont genome through gene transfer. These genes offer the potential to trace the evolutionary history of chloroplast gains and losses within these lineages. Glutamine synthetase (GS) is essential for ammonium assimilation and glutamine biosynthesis in all organisms. Three paralogous gene families (GSI, GSII, and GSIII) have been identified and are broadly distributed among prokaryotic and eukaryotic lineages. In diatoms (Heterokonta), the nuclear-encoded chloroplast and cytosolic-localized GS isoforms are encoded by members of the GSII and GSIII family, respectively. Here, we explore the evolutionary history of GSII in both photosynthetic and nonphotosynthetic heterokonts, red algae, and other eukaryotes. GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification. Additional GSII sequences from eukaryotes and bacteria were obtained from publicly available databases and genome projects. Bayesian inference and maximum likelihood phylogenetic analyses of GSII provided strong support for the monophyly of heterokonts, rhodophytes, chlorophytes, and plants and strong to moderate support for the Opisthokonts. Although the phylogeny is reflective of the unikont/bikont division of eukaryotes, we propose based on the robustness of the phylogenetic analyses that the heterokont GSII gene evolved via endosymbiotic gene transfer from the nucleus of the red-algal endosymbiont to the nucleus of the host. The lack of GSIII sequences in the oomycetes examined here further suggests that the GSIII gene that functions in the cytosol of photosynthetic heterokonts was replaced by the endosymbiont-derived GSII gene.  相似文献   

15.
The reduction of protochlorophyllide (Pchlide) is a key regulatory step in the biosynthesis of chlorophyll in phototrophic organisms. Two distinct enzymes catalyze this reduction; a light-dependent NADPH:protochlorophyllide oxidoreductase (POR) and light-independent Pchlide reductase (DPOR). Both enzymes are widely distributed among phototrophic organisms with the exception that only POR is found in angiosperms and only DPOR in anoxygenic photosynthetic bacteria. Consequently, angiosperms become etiolated in the absence of light, since the reduction of Pchlide in angiosperms is solely dependent on POR. In eukaryotic phototrophs, POR is a nuclear-encoded single polypeptide and post-translationally imported into plastids. POR possesses unique features, its light-dependent catalytic activity, accumulation in plastids of dark-grown angiosperms (etioplasts) via binding to its substrate, Pchlide, and cofactor, NADPH, resulting in the formation of prolamellar bodies (PLBs), and rapid degradation after catalysis under subsequent illumination. During the last decade, considerable progress has been made in the study of the gene organization, catalytic mechanism, membrane association, regulation of the gene expression, and physiological function of POR. In this review, we provide a brief overview of DPOR and then summarize the current state of knowledge on the biochemistry and molecular biology of POR mainly in angiosperms. The physiological and evolutional implications of POR are also discussed.  相似文献   

16.
Most photosynthetic eukaryotes synthesize both heme and chlorophyll via a common tetrapyrrole biosynthetic pathway starting from glutamate. This pathway was derived mainly from cyanobacterial predecessor of the plastid and differs from the heme synthesis of the plastid-lacking eukaryotes. Here, we show that the coral-associated alveolate Chromera velia, the closest known photosynthetic relative to Apicomplexa, possesses a tetrapyrrole pathway that is homologous to the unusual pathway of apicomplexan parasites. We also demonstrate that, unlike other eukaryotic phototrophs, Chromera synthesizes chlorophyll from glycine and succinyl-CoA rather than glutamate. Our data shed light on the evolution of the heme biosynthesis in parasitic Apicomplexa and photosynthesis-related biochemical processes in their ancestors.  相似文献   

17.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL - mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL - strain, greening occurred at the same rate at two different light intensities (5 and 50 E m-2s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding chelator protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.  相似文献   

18.
NADPH-protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide a in the chlorophyll biosynthetic pathway. Here, we identified two distinct POR cDNAs from tobacco. Both POR isoforms are encoded by a respective single copy gene in tobacco genome. The overall deduced amino acid sequences of two tobacco cDNAs, designated here POR1 and POR2, displayed significant identities (∼75%), but showed different patterns of light and developmental regulation. In contrast to the previously isolated POR isoforms of Arabidopsis thaliana and barley, the expression of both tobacco POR isoforms were not negatively regulated by light and persisted in matured green tissues. Furthermore, the expression of both genes appeared to be regulated by a diurnal regulation. These results show a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Furthermore, phylogenetic analysis including tobacco revealed that POR gene family is differentially represented by angiosperms, most of which is probably caused by independent gene duplication in individual plant. Present results imply a modification of the previous concept that chlorophyll biosynthesis and chloroplast differentiation in angiosperms are ubiquitously controlled by unique functions of two POR isoforms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Chlorophyll metabolism has been extensively studied with various organisms, and almost all of the chlorophyll biosynthetic genes have been identified in higher plants. However, only the gene for 3,8-divinyl protochlorophyllide a 8-vinyl reductase (DVR), which is indispensable for monovinyl chlorophyll synthesis, has not been identified yet. In this study, we isolated an Arabidopsis thaliana mutant that accumulated divinyl chlorophyll instead of monovinyl chlorophyll by ethyl methanesulfonate mutagenesis. Map-based cloning of this mutant resulted in the identification of a gene (AT5G18660) that shows sequence similarity with isoflavone reductase genes. The mutant phenotype was complemented by the transformation with the wild-type gene. A recombinant protein encoded by AT5G18660 was expressed in Escherichia coli and found to catalyze the conversion of divinyl chlorophyllide to monovinyl chlorophyllide, thereby demonstrating that the gene encodes a functional DVR. DVR is encoded by a single copy gene in the A. thaliana genome. With the identification of DVR, finally all genes required for chlorophyll biosynthesis have been identified in higher plants. Analysis of the complete genome of A. thaliana showed that it has 15 enzymes encoded by 27 genes for chlorophyll biosynthesis from glutamyl-tRNA(glu) to chlorophyll b. Furthermore, identification of the DVR gene helped understanding the evolution of Prochlorococcus marinus, a marine cyanobacterium that is dominant in the open ocean and is uncommon in using divinyl chlorophylls. A DVR homolog was not found in the genome of P. marinus but found in the Synechococcus sp WH8102 genome, which is consistent with the distribution of divinyl chlorophyll in marine cyanobacteria of the genera Prochlorococcus and Synechococcus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号