首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sentinel prey (an artificially manipulated patch of prey) are widely used to assess the level of predation provided by natural enemies in agricultural systems. Whilst a number of different methodologies are currently in use, little is known about how arthropod predators respond to artificially manipulated sentinel prey in comparison with predation on free‐living prey populations. We assessed how attack rates on immobilized (aphids stuck to cards) and artificial (plasticine lepidopteran larvae mimics) sentinel prey differed to predation on free‐moving live prey (aphids). Predation was assessed in response to density of the common invertebrate predators, a foliar‐active ladybird Harmonia axyridis (Coleoptera: Coccinellidae), and a ground‐active beetle Pterostichus madidus (Coleoptera: Carabidae). Significant increases in attack rates were found for the immobilized and artificial prey between the low and high predator density treatments. However, an increased predator density did not significantly reduce numbers of free‐living live aphids included in the mesocosms in addition to the alternate prey. We also found no signs of predation on the artificial prey by the predator H. axyridis. These findings suggest that if our assessment of predation had been based solely on the foliar artificial prey, then no increase in predation would have been found in response to increased predator density. Our results demonstrate that predators differentially respond to sentinel prey items which could affect the level of predation recorded where target pest species are not being used.  相似文献   

3.
A prey immunomarking procedure (PIP) in combination with generic anti-rabbit and anti-chicken immunoglobulin G (IgG) enzyme-linked immunosorbent assays (ELISAs) are used frequently to study arthropod predation. This study was conducted to: (1) further standardize the PIP as a tool for predator gut analysis research, (2) investigate the most effective means for administering IgG marks to prey items, and (3) assess the possibility of the PIP yielding false positive reactions as a consequence of a predator obtaining a mark by incidental contact with, or by a failed predation attempt on, a protein-marked prey item. The pest Lygus hesperus Knight (Hemiptera: Miridae) was tagged with either an external rabbit IgG mark, an internal chicken IgG mark, or a double (external rabbit IgG and internal chicken IgG) mark treatment. Then, the variously marked prey items were fed to chewing and piercing-sucking type predators and their gut contents were examined for the presence of IgG remains. Data revealed that all three marking treatments were highly effective at tagging targeted prey. However, ELISA results showed that the prey items should only be marked internally to maximize the likelihood of detecting prey remains while minimizing the risk of obtaining false positive errors. The merits and limitations of using the generic PIP for predator gut analysis research are discussed.  相似文献   

4.
A two-year study was conducted in a citrus orchard, Citrus sinensis L., to determine frequency of predation on glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). A total of 1,578 arthropod predators, representing 18 taxa, were collected and assayed for the presence of GWSS egg protein by an enzyme-linked immunosorbent assay using a Homalodisca-species and egg-specific monoclonal antibody and then by polymerase chain reaction using a H. vitripennis-specific DNA marker. The gut content analyses revealed the presence of GWSS remains in the gut of 2.28 % of the total arthropod predator population, with 3.09 % of the spiders and 0.59 % of the insect predators testing positive. Moreover, a comparison of the two assays indicated that they were not equally effective at detecting GWSS remains in predator guts. Low frequencies of GWSS detection in the gut of predators indicated that GWSS are not a primary prey and that predators may contribute little to suppression of this pest in citrus.  相似文献   

5.
Understanding the full diet of natural enemies is necessary for evaluating their role as biocontrol agents, because many enemy species do not only feed on pests but also on other natural enemies. Such intraguild predation can compromise pest control if the consumed enemies are actually better for pest control than their predators. In this study, we used gut metabarcoding to quantify diets of all common arachnid species in Swedish and Spanish apple orchards. For this purpose, we designed new primers that reduce amplification of arachnid predators while retaining high amplification of all prey groups. Results suggest that most arachnids consume a large range of putative pest species on apple but also a high proportion of other natural enemies, where the latter constitute almost a third of all prey sequences. Intraguild predation also varied between regions, with a larger content of heteropteran bugs in arachnid guts from Spanish orchards, but not between orchard types. There was also a tendency for cursorial spiders to have more intraguild prey in the gut than web spiders. Two groups that may be overlooked as important biocontrol agents in apple orchards seem to be theridiid web spiders and opilionids, where the latter had several small-bodied pest species in the gut. These results thus provide important guidance for what arachnid groups should be targets of management actions, even though additional information is needed to quantify all direct and indirect interactions occurring in the complex arthropod food webs in fruit orchards.  相似文献   

6.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

7.
A simplified but highly effective approach for the post‐mortem evaluation of predation on several targeted members of an arthropod assemblage that does not require the development of pest‐specific enzyme‐linked immunosorbent assay (ELISA) (e.g. pest‐specific monoclonal antibodies) or PCR assays (DNA primers) is described. Laboratory feeding studies were conducted to determine if predation events could be detected from predators that consumed prey marked with foreign protein. I determined that large and small rabbit immunoglobulin G (IgG)‐marked prey can be detected by a rabbit‐IgG‐specific ELISA in the guts of chewing and piercing–sucking type predators. I then conducted multifaceted inclusion and exclusion field cage studies to qualify the degree of interguild and intraguild predation occurring among a complex arthropod assemblage during four separate light phase treatments. The field cages contained an arthropod assemblage consisting of 11 or 12 species of predaceous arthropods and three pest species. The three pests introduced into the cages included third instar Trichoplusia ni marked with rabbit IgG, third instar Lygus hesperus marked with chicken IgG and Pectinophora gossypiella sentinel egg masses. The inclusion cages allowed foraging fire ants, Solenopis xyloni, to freely enter the cages while the exclusion cages contained barriers that prevented ant entry. The results obtained using the conventional inclusion/exclusion field cage methodology revealed that there was substantial interguild and intraguild predation occurring on the majority of the arthropods in the assemblage, particularly in those cages that included ants. I then precisely identified which predators in the assemblage were feeding on the three targeted pests by conducting three post‐mortem gut content analyses on each individual predator (1503 individuals) in the assemblage. Specifically, P. gossypiella egg predation events were detected using an established P. gossypiella‐egg‐specific ELISA, and third instar T. ni and L. hesperus predation events were detected using rabbit‐IgG‐specific and chicken‐IgG‐specific ELISAs, respectively. Generally, the gut ELISAs revealed that Collops vittatus, Spanagonicus albofasciatus and Geocoris punctipes readily preyed on P. gossypiella eggs; Nabis alternatus, Zelus renardii and spiders (primarily Misumenops celer) readily preyed on marked L. hesperus nymphs, and spiders, S. albofasciatus and N. alternatus readily preyed on T. ni larvae. Furthermore, the cage methods and the post‐mortem predator gut ELISAs revealed very few distinctive patterns of predation with regard to the light cycle the assemblage was exposed to.  相似文献   

8.
Conventional prey‐specific gut content ELISA (enzyme‐linked immunosorbent assay) and PCR (polymerase chain reaction) assays are useful for identifying predators of insect pests in nature. However, these assays are prone to yielding certain types of food chain errors. For instance, it is possible that prey remains can pass through the food chain as the result of a secondary predator (hyperpredator) consuming a primary predator that had previously consumed the pest. If so, the pest‐specific assay will falsely identify the secondary predator as the organism providing the biological control services to the ecosystem. Recently, a generic gut content ELISA was designed to detect protein‐marked prey remains. That assay proved to be less costly, more versatile, and more reliable at detecting primary predation events than a prey‐specific PCR assay. This study examines the chances of obtaining a ‘false positive’ food chain error with the generic ELISA. Data revealed that the ELISA was 100% accurate at detecting protein‐marked Lygus hesperus Knight (Hemiptera: Miridae) remains in the guts of two (true) primary predators, Hippodamia convergens Guérin‐Méneville (Coleoptera: Coccinellidae) and Collops vittatus (Say) (Coleoptera: Melyridae). However, there was also a high frequency (70%) false positives associated with hyperpredators, Zelus renardii Kolenati (Hemiptera: Reduviidae), that consumed a primary predator that possessed protein‐marked L. hesperus in its gut. These findings serve to alert researchers that the generic ELISA, like the PCR assay, is susceptible to food chain errors.  相似文献   

9.
Most people agree that arthropod natural enemies are good for insect pest management in agriculture. However, the population suppressive effects of predators, which consume their prey and often leave no direct evidence of their activity, are more difficult to study than the effects of parasitoids, which can be sampled from host populations relatively easily. We critically reviewed field studies which investigated the relationship between lepidopteran pests and their associated predatory fauna, published in 11 leading entomology and applied ecology journals between 2003 and 2008. Each study was appraised to determine whether or not it demonstrated that predators had an impact on prey (pest) populations and, if so, whether it was conducted at an ecological scale relevant to pest management. Less than half (43%) of the 54 field studies adopted methodologies that allowed the impact of predators on target pest populations to be measured. Furthermore, 76% of the studies were conducted at the scale of experimental plots rather than at the ecological scale which determines pest and predator population dynamics or at which pest‐management decisions are made. In almost one‐third of the studies, predator abundance and/or diversity was measured, but this metric was not linked with pest suppression or mortality. We conclude that much current research does not provide evidence that predatory arthropods suppress target lepidopteran pest populations and, consequently, that it has little relevance to pest management. Well‐designed ecological experiments combined with recent advances in molecular techniques to identify predator diets and the emergence of organic agriculture provide both the mechanisms and a platform upon which many predator–prey interactions can be investigated at a scale relevant to pest management. However, benefits will only be reaped from this opportunity if current approaches to research are changed and relevant ecological data are collected at appropriate ecological scales.  相似文献   

10.
Species- and group-specific PCR primers were developed to study predation on pest and nonpest invertebrate species by generalist carabid predators in agroecosystems. To ensure the amplification of degraded DNA in predator gut samples, amplicons were designed to be less than 300 bp. Specificity of primers was assessed by cross-amplification against a panel of target and nontarget invertebrate species. The new primers were combined with previously published primers for slugs and collembolla in multiplex reactions to simultaneously screen each predator for the presence of multiple prey. All prey species were detected in a screen of the gut contents of field-caught predators.  相似文献   

11.
A lower diversity of land cover types is purported to decrease arthropod diversity in agroecosystems and is dependent on patterns of land use and fragmentation. Ants, important providers of ecosystem services such as biological control, are susceptible to landscape‐level changes. We determined the relationships between land cover diversity and fragmentation on the within‐field spatial associations of ants to pests and resulting predation events by combining mapping and molecular tools. Increased land cover diversity and decreased fragmentation increased ant abundance, spatial association to pests and predation. Land cover diversity and fragmentation were more explanatory than land cover types. Even so, specific land cover types, such as deciduous forest, influenced ant and pest diversity more so than abundance. These results indicate that geospatial techniques and molecular gut content analysis can be combined to determine the role of land use in influencing predator–prey interactions and resulting predation events in agroecosystems.  相似文献   

12.
In agroecosystems, parasitoids and predators may exert top-down regulation and predators for different reasons may avoid or give preference to parasitised prey, i.e., become an intraguild predator. The success of pest suppression with multiple natural enemies depends essentially on predator–prey dynamics and how this is affected by the interplay between predation and parasitism. We conducted a simple laboratory experiment to test whether predators distinguished parasitised prey from non-parasitised prey and to study how parasitism influenced predation. We used a host-parasitoid system, Spodoptera frugiperda and one of its generalist parasitoids, Campoletis flavicincta, and included two predators, the stinkbug Podisus nigrispinus and the earwig Euborellia annulipes. In the experiment, predators were offered a choice between non-parasitised and parasitised larvae. We observed how long it took for the predator to attack a larva, which prey was attacked first, and whether predators opted to consume the other prey after their initial attack. Our results suggest that, in general, female predators are less selective than males and predators are more likely to consume non-parasitised prey with this likelihood being directly proportional to the time taken until the first prey attack. We used statistical models to show that males opted to consume the other prey with a significantly higher probability if they attacked a parasitised larva first, while females did so with the same probability irrespective of which one they attacked first. These results highlight the importance of studies on predator–parasitoid interactions, as well as on coexistence mechanisms in agroecosystems. When parasitism mediates predator choice so that intraguild predation is avoided, natural enemy populations may be larger, thus increasing the probability of more successful biological control.  相似文献   

13.
It is well known that young, small predator stages are vulnerable to predation by conspecifics, intra-guild competitors or hyperpredators. It is less known that prey can also kill vulnerable predator stages that present no danger to the prey. Since adult predators are expected to avoid places where their offspring would run a high predation risk, this opens the way for potential prey to deter dangerous predator stages by killing vulnerable predator stages. We present an example of such a complex predator–prey interaction. We show that (1) the vulnerable stage of an omnivorous arthropod prey discriminates between eggs of a harmless predator species and eggs of a dangerous species, killing more eggs of the latter; (2) prey suffer a minor predation risk from newly hatched predators; (3) adult predators avoid ovipositing near killed predator eggs, and (4) vulnerable prey near killed predator eggs experience an almost fourfold reduction of predation. Hence, by attacking the vulnerable stage of their predator, prey deter adult predators and thus reduce their own predation risk. This provides a novel explanation for the killing of vulnerable stages of predators by prey and adds a new dimension to anti-predator behaviour.  相似文献   

14.
The efficacy of two different antigen–antibody combinations to detect predation on eggs of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) was compared. The first method was an indirect enzyme‐linked immunosorbent assay (ELISA) using monoclonal antibody‐based gut content analysis that detects H. armigera egg protein. The second method was a sandwich ELISA that detects an exotic protein [rabbit immunoglobulin G (IgG)] applied as an external marker to H. armigera eggs. The target predators were the predatory beetles Dicranolaius bellulus (Guerin‐Meneville) (Coleoptera: Melyridae) and Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Beetles were fed with H. armigera eggs that had been marked with rabbit IgG and then held at various intervals after prey consumption. Each individual beetle was then assayed by both ELISA techniques to identify the prey remains in their guts. The two ELISA methods were further tested on field‐collected predators. Specifically, protein‐marked egg masses were strategically placed in a cotton field. Then, predators from surrounding cotton plants were collected at various time intervals after the marked eggs were exposed and assayed by both ELISAs to detect the frequency of predation on the marked eggs. The rabbit IgG‐specific sandwich ELISA had a higher detection rate than the H. armigera‐specific indirect ELISA under controlled and field conditions for both predator species. Moreover, a greater proportion of field‐collected D. bellulus tested positive for predation than H. variegata. The advantages and disadvantages of using prey‐marking ELISAs instead of pest‐specific ELISA assays are discussed.  相似文献   

15.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

16.
Alternative environmentally friendly methods for pest control are in high demand because of the environmental impacts of pesticides. Notably, predator-released kairomone is a natural compound released by natural enemies, which mediates non-consumptive effects between natural enemies and prey. However, this novel pest control agent is underutilized relative to pesticides and natural enemies. Additionally, the effects of spraying predator kairomone on the number and diversity of arthropods in fields and whether this method is environmental-friendly are poorly understood. In the present study, a predator kairomone, rove beetle (Paederus fuscipes Curtis) abdominal gland secretion (AGS), was sprayed in rice fields to investigate whether AGS can suppress pest populations or will affect the fields’ arthropod communities. After AGS spraying, the abundance of arthropods decreased throughout the first 12-d period, including arthropod pests such as hemipterans (small brown planthopper, Laodelphax striatellus (Fallén), brown planthopper, Nilaparvata lugens (Stål), white-backed planthopper, Sogatella furcifera (Horváth), and leafhoppers), and lepidopterans (rice leaf folder, Cnaphalocrocis medinalis Guenée). The abundance of arthropod predators was not affected, except for predatory spiders, which decreased, and rove beetles (P. fuscipes), which increased. In the terms of arthropod diversity, neither pests nor their natural enemies were changed by AGS application. This work highlights that predator kairomone can temporarily suppress pest populations in fields but has no adverse effects on arthropod diversity; thus, this approach is environmentally friendly and can be used in real-world applications. Broadly, present studies suggest that the application of predator kairomone may have synergistic or cumulative effects on pest suppression.  相似文献   

17.
One of the most important questions in biological control is whether multiple natural enemies can provide greater suppression of agricultural pests than a single best enemy. Intraguild predation (IGP) among natural enemies has often been invoked to explain failure of biological control by multiple enemies, and classical theoretical studies on IGP have supported this view. However, empirical studies are inconclusive and have yielded both positive and negative results. We extend classical models by considering anti-predator behavior of pests and diet switching of omnivorous natural enemies, and examine their effects on pest control. We assume that the pest can adaptively allocate effort toward the specific defense against each predator, and that the omnivorous natural enemy can consume disproportionately more of the relatively abundant prey (switching predation) by type III functional responses to prey items. The model predicts that adaptive defense augments pests but favors introduction of multiple natural enemies for controlling pests if IGP is weak. In contrast, switching predation does not make pest control by multiple natural enemies advantageous as in classical studies, in the absence of adaptive defense. However, switching predation reduces the necessity of defense by the pest against the omnivore and offsets the effect of adaptive defense. Thus, it makes the introduction of multiple natural enemies advantageous for pest control when the pest employs adaptive defense even if IGP is strong. These results suggest that types and combinations of behavior of prey and predators may greatly affect qualitative outcomes of biological control by multiple natural enemies.  相似文献   

18.
Tandonia budapestensis is one of the most damaging species of slug in the UK , and can cause major losses in potatoes and cereals . No previous attempts appear to have been made to investigate the potential of natural enemies to control this slug . Monoclonal antibodies can be used to analyze the crop contents of predators collected from the field , in order to detect and quantify the remains of major pest species and identify important natural enemies . A species - specific antibody was therefore raised that could distinguish between T. budapestensis and all other molluscs tested . The antibody could detect as little as 5.57 ng of prey protein in an enzyme - linked immunosorbent assay . It could clearly identify the remains of T. budapestensis among the crop contents of the carabid Pterostichus melanarius for more than 26 h at 16 o C , while the half - life of the antigen within the predator was 12.8 h . Such intervals make it a highly suitable antibody probe for quantifying predation during the previous day . The only serious cross - reactivity problem was with earthworms . The antibody can now be used to test predators collected from the field to see if they are indeed consuming this slug , or whether , as suggested by feeding trials , adult T. budapestensis are to some degree toxic to beetles and therefore avoided .  相似文献   

19.
The molecular detection of predation is a fast growing field, allowing highly specific and sensitive detection of prey DNA within the gut contents or faeces of a predator. Like all molecular methods, this technique is prone to potential sources of error that can result in both false positive and false negative results. Here, we test the hypothesis that the use of suction samplers to collect predators from the field for later molecular analysis of predation will lead to high numbers of false positive results. We show that, contrary to previous published work, the use of suction samplers resulted in previously starved predators testing positive for aphid and collembolan DNA, either as a results of ectopic contamination or active predation in the collecting cup/bag. The contradictory evidence for false positive results, across different sampling protocols, sampling devices and different predator-prey systems, highlights the need for experimentation prior to mass field collections of predators to find techniques that minimise the risk of false positives.  相似文献   

20.
Kheirodin  Arash  Simmons  Alvin M.  Schmidt  Jason M. 《BioControl》2022,67(5):497-511

Developing a successful biological control program relies on understanding predator–prey interactions in agroecosystem field settings. Among several methods used, molecular gut content analysis (MGCA) has become a popular method to measure predator contributions to pest control services. Once MGCA is applied to diagnose predator–prey interactions, the DNA detectability half-life is often applied to adjust for differences in prey digestion time among predators. Although MGCA best practices are well established, with many primers available, further work is needed to rank among published primers for MGCA. Using a combination of laboratory feeding trials and application of diagnostic MGCA to field collected predators, we investigated Bemisia tabaci post-feeding detection times in three dominant predator functional groups (chewing, piercing/sucking, and spiders). This was based on three published B. tabaci-specific primers. These data reveal that primer choice generated significantly different B. tabaci DNA half-lives in predator gut content. The primers with longer half-life resulted in higher field predation frequency estimation. Our field data using the primer with the longest half-life suggest several abundant predators, including Hippodamia convergens, Geocoris punctipes, Orius spp., Thomisidae spider, and fire ants (Solenopsis invicta), are actively feeding on B. tabaci in cotton fields. Orius spp. and fire ants were the most abundant predator species in our study area and contributed the most to B. tabaci control. Our results suggest that primers can be classified based on their specific DNA half-lives and can be used to address different ecological questions such as how to study time-specific predation detection (nocturnal or diurnal).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号