首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mimicry between streptococcal M protein and cardiac myosin is important in the pathogenesis of rheumatic heart disease. M protein-specific human T cell clones derived from rheumatic carditis were cross-reactive with human cardiac myosin, and laminin, a valve protein. Among the 11 CD4(+) and CD8(+) cross-reactive T cell clones, at least 6 different reactivity patterns were distinguished, suggesting different degrees of cross-reactivity and a very diverse T cell repertoire. The latter was confirmed by a heterogeneous Vbeta gene and CDR3 usage. HLA restriction and Th1 cytokine production in response to rM6 protein were preserved when the T cell clones were stimulated by human cardiac myosin or other alpha-helical proteins, such as tropomyosin and laminin. The cross-reactive human T cell clones proliferated to B2 and B3A, dominant peptide epitopes in the B repeat region of streptococcal M protein. In human cardiac myosin, epitopes were demonstrated in the S2 and light meromyosin regions. In our study, T cell mimicry was defined as recognition of structurally related Ags involved in disease and recognized by the same T cell. Mimicry in our study was related to alpha-helical coiled coil proteins which have a repetitive seven-aa residue periodicity that maintains alpha-helical structure and thus creates a high number of degenerate possibilities for recognition by T cells. The study of human T cell clones from rheumatic heart disease revealed potential sites of T cell mimicry between streptococcal M protein and human cardiac myosin and represents some of the most well-defined T cell mimicry in human autoimmune disease.  相似文献   

2.
Molecular mimicry between streptococcal and human proteins has been proposed as the triggering factor leading to autoimmunity in rheumatic fever (RF) and rheumatic heart disease (RHD). This article summarises studies on genetic susceptibility markers involved in the development of RF/RHD. It also focuses on the molecular mimicry in RHD mediated by the responses of B and T cells of peripheral blood, and T cells infiltrating heart lesions, against streptococcal antigens and human tissue proteins. The molecular basis of T-cell recognition is assessed through the definition of heart-crossreactive antigens. The production of cytokines from peripheral and heart-infiltrating mononuclear cells suggests that T helper 1 (Th1)-type cytokines are the mediators of RHD heart lesions. An insufficiency of interleukin 4 (IL-4)-producing cells in the valvular tissue might contribute to the maintenance and progression of valve lesions.  相似文献   

3.
Molecular mimicry or epitope similarity between group A streptococcal M proteins and myosin may contribute to the presence of heart reactive antibodies in acute rheumatic fever. In our study overlapping synthetic peptides copying the entire sequence of PepM5 protein were used to map the myosin cross-reactive epitopes of streptococcal M protein recognized by mouse and human mAb and affinity purified myosin-specific antibodies from acute rheumatic fever and rheumatic heart disease sera. Overlapping M protein peptides SM5(164-197)C and SM5(184-197)C inhibited the murine mAb reactions with PepM5 protein. The human mAb and affinity purified myosin-specific antibodies reacted exclusively with SM5(184-197)C. However, one of the five different purified myosin-specific antibodies not only reacted with SM5(184-197)C but also reacted with SM5(84-116)C. The synthetic subpeptides SM5(175-184)C and SM5(188-197C) did not react with any of the antibodies to PepM5 and myosin demonstrating a requirement of the 184-188 amino acid sequence for antibody recognition. A heptapeptide containing the sequence SM5(183-189) was also found to inhibit selected human myosin-specific antibodies and a human antimyosin mAb. Therefore, the majority of mouse and human myosin crossreactive antibodies recognized an epitope within the 14 residue carboxy terminus of PepM5 which appeared to involve the GLN-LYS-SER-LYS-GLN sequence.  相似文献   

4.
Rabbit antisera evoked by purified pepsin-extracted group A streptococcal M proteins were screened for the presence of joint cross-reactive antibodies by indirect immunofluorescence using thin sections of mouse knee joints. Pep M1, M5, and M18 antisera contained antibodies that cross-reacted with chondrocytes, cartilage, and synovium. Immunofluorescence inhibition assays showed that some of the joint cross-reactive epitopes were shared among the three heterologous serotypes of M protein. The pep M5 joint cross-reactive epitopes were localized to three different synthetic peptides of the C-terminal region of pep M5. Immunoblot analyses showed that the M5 joint cross-reactive antibodies recognized two proteins of human synovium and cartilage of molecular mass 56 and 58 kDa. The cross-reactive antibodies binding to the 56-kDa protein were inhibited by purified vimentin in immunoblot inhibition experiments. M protein-specific antibodies from patients with acute rheumatic fever were also shown to cross-react with joint tissue in a pattern similar to the rabbit antisera. Rabbit and human M protein-specific antibodies that were bound to articular cartilage activated significant levels of complement when compared to control serum, suggesting that M protein joint cross-reactive antibodies could potentially be involved in the pathogenesis of ARF and arthritis.  相似文献   

5.
The protective immunogenicity of chemically synthesized copies of the NH2-terminal region of type 6 streptococcal M protein was investigated. Four overlapping peptides were synthesized by copying residues 1-20, 10-20, 12-31, and 22-31. Rabbit antisera raised against whole cells of type 6 streptococci reacted at high dilutions (1/12,800 to 1/51,200) with S-M6(1-20) and S-M6(10-20), and at low dilutions (1/100-1/800) with S-M6(12-31) and S-M6(22-31), indicating that the NH2-terminal region of type 6 M protein bears immunodominant epitopes. When covalently linked to tetanus toxoid and emulsified in complete Freund's adjuvant, the synthetic peptides S-M6(1-20), S-M6(10-20), and S-M6(12-31), but not S-M6(22-31), evoked type-specific opsonic antibodies against type 6 streptococci. Although the immune sera reacted in low dilutions by enzyme linked immunoabsorbent assay (ELISA) with the heterologous M protein polypeptides pep M5, pep M19, and pep M24, they failed to opsonize the streptococci from which these M protein polypeptides were derived. Each of the immune sera reacted in high dilution by ELISA with the respective immunizing peptides. All except those against S-M6(22-31) also reacted with pep M6. None of the immune sera reacted with human cardiac tissue by immunofluorescence or with muscle myosin by ELISA. The pattern of the inhibition of opsonization by each of the synthetic peptides of each of the immune sera indicates the presence of at least three protective epitopes in the NH2-terminal region of type 6 M protein. Our results indicate that the NH2-terminal region of type 6 M protein contains both protective and nonprotective epitopes, and chemically synthesized copies of this region lack cardiac tissue cross-reactive epitopes. These studies hold promise for the development of safe and effective vaccines against group A streptococci, especially against the strains giving rise to rheumatic fever and rheumatic heart disease.  相似文献   

6.
Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.  相似文献   

7.
Anti-human cardiac myosin autoantibodies in Kawasaki syndrome.   总被引:3,自引:0,他引:3  
Kawasaki syndrome (KS) is the major cause of acquired heart disease in children. Although acute myocarditis is observed in most patients with KS, its pathogenesis is unknown. Because antimyosin autoantibodies are present in autoimmune myocarditis and rheumatic carditis, the purpose of the current study was to determine whether anticardiac myosin Abs might be present during the acute stage of KS. Sera from KS patients as well as age-matched febrile controls and normal adults were compared for reactivity with human cardiac myosin in ELISAs and Western blot assays. A total of 5 of 13 KS sera, as compared with 5 of 8 acute rheumatic fever sera, contained Ab titers to human cardiac myosin that were significantly higher than those found in control sera. Both cardiac and skeletal myosins were recognized in the ELISA by KS sera, although stronger reactivity was observed to human cardiac myosin. Only IgM antimyosin Abs from KS sera were significantly elevated relative to control sera. KS sera containing antimyosin Abs recognized synthetic peptides from the light meromyosin region of the human cardiac myosin molecule and had a different pattern of reactivity than acute rheumatic fever sera, further supporting the association of antimyosin Ab with KS. These Abs may contribute to the pathogenesis of acute myocarditis found in patients with KS.  相似文献   

8.
A synthetic peptide approach has been used to identify the epitopes recognized by clonal and polyclonal human T cells reactive to the recombinant mycobacterial 65-kDa protein Ag. Three of the four epitopes identified were recognized as cross-reactive between Mycobacterium tuberculosis and Mycobacterium leprae, although their amino acid sequence in two of three cases was not identical. The peptide (231-245) defining an epitope recognized as specific to the M. tuberculosis complex contains two substitutions compared with the homologous M. leprae region of which one or both are critical to T cell recognition. The reactive T cell clones showed helper/inducer phenotype (CD4+, CD8-), and secrete IL-2, granulocyte-macrophage-CSF, and IFN-gamma upon Ag stimulation. The same clones display cytotoxicity against macrophages pulsed with the relevant peptides or mycobacteria.  相似文献   

9.
To identify conserved T and B cell epitopes on the M protein of group A beta-hemolytic streptococci, overlapping synthetic peptides that span the conserved carboxyl-terminal segment of the M-5 protein were constructed and used to immunize a panel of H-2 congenic mice. Proliferative T cell epitopes were identified and, in many cases, mice immunized with these peptides produced high titer antibodies to the same peptides indicating that these proliferative epitopes could also stimulate Th cells. Peptide-specific T cells and antisera were tested for their reactivity with porcine myosin, tropomyosin, human heart myosin synthetic peptides, and extracts of human pericardial and atrial heart tissue. Although there was minimal response of M peptide-specific T cells to any of these Ag, certain M peptide-specific antisera reacted to immunoblotted porcine myosin and to an immunoblotted extract of human atrial heart tissue. However, two conserved peptides, LRRDLDASREAKKQVEKALE and KLTEKEKAELQAKLEAEAKA, stimulated peptide-specific antibodies in B10.BR and B10.D2 mice respectively, which reacted minimally if at all with human atrial heart tissue extract. Furthermore, antisera to the former peptide, in a bactericidal assay involving human monocytes, could mediate killing of streptococci (82% of bacteria). Although this level of killing is less than that produced by antisera to the highly polymorphic type-specific aminoterminus (up to 100% killing), it provides evidence that conserved epitopes can be the targets of bactericidal antibodies. These conserved epitopes may be useful in a vaccine because they also stimulate T cells, thus allowing development of immunologic memory and natural boosting of an immune response after natural exposure.  相似文献   

10.
MAGE genes are expressed by many human tumors of different histological types but not by normal cells, except for male germline cells. The Ags encoded by MAGE genes and recognized by T cells are therefore strictly tumor-specific. Clinical trials involving therapeutic vaccination of cancer patients with MAGE antigenic peptides or proteins are in progress. To increase the range of patients eligible for therapy with peptides, it is important to identify additional MAGE epitopes recognized by CTL. Candidate peptides known to bind to a given HLA have been used to stimulate T lymphocytes in vitro. In some instances, CTL clones directed against these synthetic peptides have been obtained, but these clones often failed to recognize tumor cells expressing the relevant gene. Therefore, we designed a method to identify CTL epitopes that selects naturally processed peptides. Monocyte-derived dendritic cells infected with a recombinant canarypoxvirus (ALVAC) containing the entire MAGE-A1 gene were used to stimulate CD8+ T lymphocytes from the blood of individuals without cancer. Responder cell microcultures that specifically lysed autologous cells expressing MAGE-A1 were cloned using autologous stimulator cells either transduced with a retrovirus coding for MAGE-A1 or infected with recombinant Yersinia-MAGE-A1 bacteria. The CTL clones were tested for their ability to lyse autologous cells loaded with each of a set of overlapping MAGE-A1 peptides. This strategy led to the identification of five new MAGE-A1 epitopes recognized by CTL clones on HLA-A3, -A28, -B53, -Cw2, and -Cw3 molecules. All of these CTL clones recognized target cells expressing gene MAGE-A1.  相似文献   

11.
Acetylcholine receptor-(AcChR) specific T cell lines were propagated from the PBL of six myasthenia gravis (MG) patients by the use of a pool of synthetic peptides (alpha-pool) corresponding to the complete sequence of the alpha-subunit of the human AcChR. All the lines had CD4+ phenotype and strongly recognized the alpha-pool. Four lines cross-reacted with native Torpedo AcChR. Five lines showed, at certain stages of their propagation, some degree of reactivity to autologous or DR-matched APC. One of the CD4+ T lines was challenged with each one of the peptides present in the alpha-pool. Several peptides, corresponding to the sequence segments 48-67, 101-120, 304-322, 320-337, and 419-437 of the human alpha-subunit were recognized, indicating that different epitopes and multiple T cell clones are involved in the recognition of the autoantigen in MG. Human AcChR-specific CD4+ T cell lines will be useful to identify the repertoire of epitopes recognized by the autoreactive Th cells in MG, to investigate the TCR genes utilized by autoreactive Th cells and to develop specific immunosuppressive treatments using anti-T cell vaccination.  相似文献   

12.
One prerequisite for developing peptide-based allergen immunotherapy is knowing the T cell epitopes of an allergen. In this study, human T cell reactivity against the major dog allergen Can f 1 was investigated to determine peptides suitable for immunotherapy. Seven T cell epitope regions (A-G) were found in Can f 1 with specific T cell lines and clones. The localization of the epitope regions shows similarities with those of the epitopes found in Bos d 2 and Rat n 1. On average, individuals recognized three epitopes in Can f 1. Our results suggest that seven 16-mer peptides (p15-30, p33-48, p49-64, p73-88, p107-122, p123-138, and p141-156), each from one of the epitope regions, show widespread T cell reactivity in the population studied, and they bind efficiently to seven HLA-DRB1 molecules (DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, DRB1*1101, DRB1*1301, and DRB1*1501) predominant in Caucasian populations. Therefore, these peptides are potential candidates for immunotherapy of dog allergy.  相似文献   

13.
No vaccine is yet available against serogroup B meningococci, which are a common cause of bacterial meningitis. Some outer membrane proteins (OMP), LPS, and capsular polysaccharides have been identified as protective Ag. The amino acid sequence of the protective B cell epitopes present within the class 1 OMP has been described recently. Synthetic peptides containing OMP B cell epitopes as well as capsular polysaccharides or LPS protective B cell epitopes have to be presented to the immune system in association with T cell epitopes to achieve an optimal Ir. The use of homologous, i.e., meningococcal, T cell epitopes has many advantages. We therefore investigated recognition sites for human T cells within the meningococcal class 1 OMP. We have synthesized 16 class 1 OMP-derived peptides encompassing predicted T cell epitopes. Peptides corresponding to both surface loops and trans-membrane regions (some of which occur as amphipathic beta-sheets) of the class 1 OMP were found to be recognized by T cells. In addition, 10 of 11 peptides containing predicted amphipathic alpha-helices and four of five peptides containing T cell epitope motifs according to Rothbard and Taylor (Rothbard, J. B., and W. R. Taylor. 1988. EMBO J 7:93) were recognized by lymphocytes from one or more volunteers. Some of the T and B cell epitopes were shown to map to identical regions of the protein. At least six of the peptides that were found to contain T cell epitopes show homology to constant regions of the meningococcal class 3 OMP and the gonococcal porins PIA and PIB. Peptide-specific T cell lines and T cell clones were established to investigate peptide recognition in more detail. The use of a panel of HLA-typed APC revealed clear HLA-DR restriction patterns. It seems possible now to develop a (semi-) synthetic meningococcal vaccine with a limited number of constant T cell epitopes that cover all HLA-DR locus products.  相似文献   

14.
Chronic Chagas disease occurs in 16 million individuals chronically infected by the protozoan Trypanosoma cruzi in Latin America, and may lead to a dilated cardiomyopathy in 10-30% of patients. A vigorous cellular immune response holds parasitism in check. However, up to now, few T. cruzi proteins have been shown to be recognized by CD8+ T cells from Chagas disease patients. In this study, we designed 94 peptides derived from T. cruzi proteins cruzipain and FL-160, predicted to bind to HLA-A2 molcules. After in vitro binding assays to HLA-A*0201, 26 peptides were selected, and their recognition by PBMC from Chagas disease patients was tested with the IFN-gamma ELISPOT assay. All 26 peptides were recognized by PBMC from at least one patient. Furthermore, a tetrameric HLA-A*0201 complex built with the cruzipain 60-68 peptide that was frequently recognized in the periphery also bound to CD8+ T cells from a heart-infiltrating T cell line obtained from a single patient with Chagas disease cardiomyopathy. Thus, our results suggest that the recognition of CD8+ T cell epitopes in cruzipain and FL-160 may have a pathogenic or protective role in chronic Chagas disease.  相似文献   

15.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   

16.
Rheumatic heart disease (RHD) or acute rheumatic fever (ARF) develops as a consequence of an exaggerated immune response to Group A beta haemolytic streptococci causing pharyngitis. The molecular mimicry appears between human cardiac myosin and M protein of group A streptococcal membranes. The polymorphism of the protein tyrosine phosphatase nonreceptor 22 (PTPN22) gene, which encodes an important negative regulator of T cell activation, has been reported to be associated with susceptibility to several autoimmune diseases such as SLE and RA. The objective of this study was to investigate whether PTPN22 R620W polymorphism confers susceptibility to RHD in Turkish population. PTPN 22 R620W (rs2476601, A/G) polymorphism was genotyped by PCR-RFLP in 121 patients with RHD who fulfilling the revised classification criteria of Jones, and 160 healthy control (HC), and also 137 SLE as a diseased–control. The frequency of GG and AG genotypes were found to be 94% (114), 6% (7) in RHD, respectively and 96% (153) and 4% (7) in HC, respectively. The homozygous AA genotype was not present in RHD and HC. There was no statistically significant difference between RHD and HC according to the frequency of AG heterozygote genotype (P = 0.831; OR = 1.13; 95% CI 0.37–3.46). The frequency of the rare allele A was also very similar in RHD patients and HC (3, 2% respectively). A similar result was also found between SLE and HC. Our results demonstrated that the PTPN22 R620W polymorphism is not associated with RHD nor with SLE in Turkish population.  相似文献   

17.
Stimulation of T cells by superantigens has been reported to be dependent on the presence of APC where binding to class II molecules is a prerequisite to recognition by the TCR. We examined the response of human T cells and a leukemic T cell line, Jurkat to the superantigen, streptococcal M protein. We show that immobilized or cross-linked streptococcal M protein stimulates Jurkat cells (V beta 8), but not normal purified human T cells, to produce IL-2. Activation of purified T cells by this superantigen required costimulatory signals provided by PMA, IL-1, and IL-6. These cytokines and growth factors alone can induce IL-2 production by T cells; however, proliferation occurred only in the presence of superantigen, which together with PMA, IL-1, and IL-6 induced the expression of IL-2R alpha on T cells. Similar results were obtained when the response of purified T cells to another known superantigen, staphylococcal enterotoxin B were examined, indicating that this phenomenon is not unique to M protein. Superantigens interact with a large number of T cells with particular V beta, and thus provide excellent models for studies of the role of biochemical events and signal transduction in T cell activation. Understanding these events may also explain the pathogenesis of autoimmune diseases associated with certain superantigens, such as streptococcal M protein that is thought to be involved in rheumatic fever and rheumatic heart disease.  相似文献   

18.
Purified group A streptococcal M proteins, pep M5 and pep M6, bearing heart cross-reactive epitopes were compared with pep M24, which lacks such epitopes, in their ability to induce functional differentiation of human T lymphocytes. Lymphocytes activated by pep M5 and pep M6 demonstrated cytotoxic activity against cultured heart cells, whereas pep M24-activated cells differentiated into suppressor T cells, which specifically blocked cytotoxic T lymphocytes against cultured human myocardial cells and not NK cell activity against K562 cells. Pep M5 and not pep M24 induced an increase in the number of CD4, 4B4, helper/inducer T cells. In addition, these M proteins appear to induce different biochemical changes in T lymphocytes. Both pep M5 and pep M24 induced the phosphorylation of a 35-kDa cytoplasmic protein; however, only pep M5 induced the phosphorylation of a 28-kDa membrane protein, primarily in CD4 T cells. These data indicate that the virulent M protein Ag of group A streptococci may exert their effect on the human immune system via different mechanisms. Determining these mechanisms and the biochemical pathways involved in T cell differentiation triggered by these Ag may be important in understanding the pathogenesis of post-streptococcal diseases.  相似文献   

19.
T cells recognizing tumor-associated Ags such as Wilms tumor protein (WT1) are thought to exert potent antitumor reactivity. However, no consistent high-avidity T cell responses have been demonstrated in vaccination studies with WT1 as target in cancer immunotherapy. The aim of this study was to investigate the possible role of negative thymic selection on the avidity and specificity of T cells directed against self-antigens. T cell clones directed against the HLA-A*0201-binding WT1(126-134) peptide were generated from both HLA-A*02-positive (self-HLA-restricted) and HLA-A*02-negative [nonself (allogeneic) HLA [allo-HLA]-restricted] individuals by direct ex vivo isolation using tetramers or after in vitro priming and selection. The functional avidity and specificity of these T cell clones was analyzed in-depth. Self-HLA-restricted WT1-specific clones only recognized WT1(126-134) with low avidities. In contrast, allo-HLA-restricted WT1 clones exhibited profound functional reactivity against a multitude of HLA-A*02-positive targets, even in the absence of exogenously loaded WT1 peptide, indicative of Ag-binding promiscuity. To characterize this potential promiscuity, reactivity of the T cell clones against 400 randomly selected HLA-A*0201-binding peptides was investigated. The self-HLA-restricted WT1-specific T cell clones only recognized the WT1 peptide. In contrast, the allo-HLA-restricted WT1-reactive clones recognized besides WT1 various other HLA-A*0201-binding peptides. In conclusion, allogeneic HLA-A*02-restricted WT1-specific T cells isolated from mismatched donors may be more tumor-reactive than their autologous counterparts but can show specific off-target promiscuity of potential clinical importance. As a result of this, administration of WT1-specific T cells generated from HLA-mismatched donors should be performed with appropriate precautions against potential off-target effects.  相似文献   

20.
A L Rothman  I Kurane    F A Ennis 《Journal of virology》1996,70(10):6540-6546
The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least five different CD4+ phenotypes and six different CD8+ phenotypes. Individual T-cell clones recognized epitopes on the dengue virus pre-M, E, NSl/NS2A, and NS3 proteins and were restricted by the I-Ad, I-Ed, Ld, and Kd antigens. Both serotype-specific and serotype-cross-reactive clones were isolated in the CD4+ and CD8+ subsets; among CD8+ clones, those that recognized the dengue virus structural proteins were serotype specific whereas those that recognized the nonstructural proteins were serotype cross-reactive. All of the CD8+ and one of five CD4+ clones lysed dengue virus-infected target cells. Using synthetic peptides, we identified an Ld-restricted epitope on the E protein (residues 331 to 339, SPCKIPFEI) and a Kd-restricted epitope on the NS3 protein (residues 296 to 310, ARGYISTRVEM GEAA). These data parallel previous findings of studies using human dengue virus-specific T-cell clones. This experimental mouse system may be useful for studying the role of the virus serotype and HLA haplotype on T-cell responses after primary dengue virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号